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XXVII. On the Astronomical Refractions. By J.Ivory,
A M. F.R. S.

Read June 19, 1823.

1. IT was known to the ancient astronomers that there is a
difference between the real and apparent places of the stars,
arising from the refraction of light in its passage through
the atmosphere. Tycno BrRAHE' was the first who attempted
to free his observations from the effect of this irregularity.
Since his time, the astronomical refraction has become more
and more an object of attention, as it is found to have the
greatest influence on the delicate exactness of modern ob-
servations. In the course of the last twenty years, many
researches on this subject have been published by philoso-
phers of the first note, who have applied all the resources,
both of theory and practice, to overcome the difficulties which
it presents. By these means our knowledge has been greatly
extended ; but the problem of the refractions must still be
considered as the most imperfect part of modern astronomy.

The first hypothesis for bringing the astronomical refrac-
tion under a regular mode of calculation was proposed by
Cassint.  He supposed that the atmosphere is a spherical
shell consisting of a transparent fluid uniform in its density,
which reaches to a certain height above the earth’s surface.
In this manner the change in the direction of the light coming
from a star, is effected at the outer surface of the pellucid
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410 M. IvorY on the astronomical refractions.

medium, and it is computed by the most elementary principles
of optics. This hypothesis, although extremely simple, leads
to a rule for the refractions which, to a certain extent, is as
accurate as any other. Perhaps it is owing to its great sim-
plicity, that the method of CassiNt seems not to have met
from astronomers with the attention it deserves. Another
hypothesis attributes a variable density to the atmosphere,
but assumes that the rate of decrease is exactly proportional
to the height ascended. This supposition is in some degree
less inaccurate than that of CassiNi. Most of the formule
for the refractions that have obtained any extensive use in
astronomy may be deduced from it. Kramp took a more
extended view of the problem, and one less exceptionable, as
approaching nearer to nature. He conducted his calculations
by the real laws that regulate the density of the air, namely,
the pressure and temperature. LaPLACE coincides with Kramp
in the general view he takes of this theory ; but, in treating
it, he has given new proofs of that sagacity and mathematical
skill, which has enabled him to accomplish so much in phy-
sical science. The table, computed by the theory of LapLack,
first published in 1806, perhaps at this day gives the law of
the mean refractions with greater accuracy than any other,
whether founded on theory or observation.

In the hypothesis of Cassini, the atmosphere extends no
higher than five miles above the earth’s surface. On the
supposition of a density decreasing at an equable rate, its
height is limited to ten miles ; but in the view of the problem
taken by Kramp and Laprack, the atmosphere extends in-
definitely into space. In the two first hypotheses, the hori-
zontal refraction is considerably less than the observed
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quantity ; in the last, it is much greater than the truth. Now
we may suppose an infinite number of atmospheres, gradually
increasing in height, to be interposed between the two ex-
treme cases ; and as the horizontal refraction appears to in
crease with the height, there must be some intermediate case
which will quadrate with observation in this respect. If we
reflect that all these atmospheres will agree in giving the
refractions actually observed by astronomers as far as 40o°
or 80° from the zenith, it is natural to think that the one
which likewise coincides with nature at the horizon, will
deviate but little from the truth in the intermediate 10°. At
any rate we may conjecture, that the height of the atmosphere
is an element in the problem that ought not to be neglected.
It may be argued indeed that the infinite atmosphere con-
sidered by Kramp and Larracg, will hardly be different,
mathematically speaking, from one of such considerable alti-
tude as we must suppose in the case of the earth ; and that
inreality, all very high atmospheres may be reckoned as form-
ing only one case, or at least as leading to results differing
from one another only by insensible shades, that may safely
be neglected in practice. This observation is probably well
founded ; and, beyond a certain limit, it must undoubtedly
be true; but in a problem of such capital importance in as-
tronomy, the point deserves at least to be examined; more
especially as it may lead to some more certain knowledge
than we have yet acquired, with respect to the extent and
constitution of our atmosphere.

We have no direct knowledge of the height of the atmo-
sphere, except what is derived from the duration of the twi-
light, and from the great elevation at which meteors are
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occasionally observed in it. From these sources we learn
that the air extends forty or fifty miles above the earth’s
surface, and even at that altitude still continues to possess a
density sufficient for refracting and réﬂecting the rays of
light.

The authors* who have written on the height and figure
of the atmosphere have likewise assigned a boundary, beyond
which it cannot reach. But in this they have rather fixed
a limit to the domain peculiarly belonging to the earth, than
reasoned upon any distinguishing properties of the atmo-
sphere. If we conceive a body that circulates round the
earth by the force of gravitation in the time of a diurnal re-
volution, the path which it describes will mark the limit
where the centrifugal force arising from the rotatory motion
of the earth, will just balance the opposite centripetal force.
Therefore any body that participates of the rotatory inotion
common to all, if placed beyond the boundary we have men-
tioned, would continually recede from the earth, and would
be lost in the immensity of space ; if placed within the same
boundary, it would fall to the common centre. The radius
of the orbit described by the revolving body is about 25,000
miles, or something more than three diameters of the terres-
trial globe. Now the air surrounding the earth cannot reach
so far; for if it did, it would be continually dissipated; a
supposition which is extremely improbable, since we are
acquainted with no source from which a constant waste of so
necessary a fluid might be supplied.

But if we would acquire more correct notions as to the
height of the atmosphere, we must consider more closely the

#* D’ALEMBERT, Opus. Tom. 6. Larrace, Mec, Celeste, Liv. 3. Cap. 7.
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principles on which it must depend. Conceive a cylinder of
air extending indefinitely in a vertical direction, and let it be
divided into equal parts of a moderate length, so that the
density of every division may be considered as uniform :
then, if we abstract from the diminution of gravity and the
increase of the centrifugal force, which are inconsiderable
within 200 or goo miles of the earth’s surface, the weight of
the air in every portion of the cylinder will be proportional
to its density. Now, if we admit that the elastic force is
likewise proportional to the density, as it would be in an
atmosphere of uniform temperature, it will follow, that the,
weights of the several divisions of the cylinder will vary in
the same proportion as their elasticities. But in the lowest
part of the cylinder, the weight of the small quantity of air
contained in one division, is incomparably less than its elastic
force, which is an equipoise to the whole atmosphere : and
the same thing will therefore be true of every portion of the
cylinder, however high it is placed. Hence an atmosphere
constituted as we have supposed, must necessarily be infinite
in its extent. For if it were finite, since there is no pressure
at the surface, the weight of a volume of air situated there .
would be in equilibrium with its elastic force, whereas it has
been proved that the former is always an inconsiderable part
of the latter.

But in the foregoing reasoning, a cause is neglected which
diminishes the elasticity of the air as we ascend above the
earth’s surface, without affecting the force of gravity in any
degree. In the higher parts of the atmosphere a continually
increasing degree of cold is found to prevail. Now, the
effect of cold is to contract all bodies in their dimensions;
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and therefore, by the operation of this cause, as we ascend in
the atmosphere, the expansive force of a given volume of air
is constantly diminished and brought nearer to an equality
with its weight. To estimate this effect with greater pre-
cision, let §', ', ¢/, denote the barometric pressure, the density,
and the temperature by the centigrade thermometer, at the
earth’s surface ; and let the same letters, without the accent,

denote the same things at any height z ; then, if == 8—23, the

expansion for one centigrade degree, the known laws that
obtain in the expansion of elastic fluids, will lead to this
formula, viz.

+Bt z
I—I—B/ =

Now here -;7 is the measure of the elastic force at the height

i —
P’

z in parts of the same force at the surface ; and we see that

it depends on the temperature as well as on the relative
14 B¢
148
to unit, but it continually decreases as the temperature be-

density =-- At the earth’s surface the quantity is equal
2 .
comes less in ascending. We cannot conceive that it will

become negative, nor can we set any bounds to its approach

14 B¢
148

the elastic force of the air will cease, and gravity will stop
the farther dilatation of the atmosphere. This reasoning is
independent of the law of the densities; and it proves both
that the atmosphere may be finite in its extent, and that it
may have a finite density at its upper surface. But it may
be objected, that the effect of temperature on the air’s elas-
ticity has been verified only to a certain extent ; and that in
the case of air of great rarity, and subjected to extreme

to zero. But when —>= — 57 1s evanescent, or when ¢ == — 266°,
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degrees of cold, the law of dilatation and contraction may
be very different from what it has been observed to be in the
limited range of our experiments. This observation is pro-
bably well founded, but it will not destroy the force of what
has been advanced. We know that air always gives out heat
when it is compressed into a less volume, and absorbs heat
when it expands. As long therefore as that fluid retains its
elasticity, so long, we must conclude, will temperature con-
tinue to modify the changes of bulk which that force produces.
The law of dilatation and contraction may no doubt undergo
some change in different circumstances, but every expansion
must be productive of cold, and every new degree of cold
must diminish the elastic force of a given volume of air.
Gravity continuing to act with nearly the same energy, while
the elastic force of the air is continually diminished, these
two forces will at length become equivalent, and will counter-
balance one another, which is all that is necessary for imposing
a limit to the extent of the atmosphere. We have proved that
air, if it were confined by the action of gravity alone, would
extend indefinitely into space; and it is not unreasonable to
consider the effect of temperature as a contrivance for securely
‘attaching to the terrestrial globe a fluid so necessary in every
_point of view to the economy of nature.

Since it is found that all elastic fluids follow the same laws
in regard to heat and pressure, the foregoing reasoning is
equally true, whether we conceive the atmosphere as com-
posed of one homogeneous fluid, or as a collection of many
elastic gases and vapours, however much they may differ
from one another in specific gravity. ,

It may even be possible to form some reasonable conjecture
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as to the actual height of the finite atmosphere. Gay Lussac
ascended in a balloon to the altitude of 3816 English fathoms,
or nearly 4% miles above the level of the Seine at Paris; the
proportion of the heights of the barometer in the balloon and
at the surface of the earth being 0.467 nearly, which is
therefore the relative elasticity of the air. The temperatures,
as observed at the extremities of the elevation, were 30°.8,
and —9°.5 on the centigrade scale ; and if we increase 0.467
to what it would have been, had the temperature remained
unchanged during the ascent, we shall find o.500, which is
the density of the air at the height ascended in parts of the
density at the surface of the earth. ‘Thus, in the decreasing
scale of elasticities, the diminution is from 1 to 0.467 ; but,
in the decreasing scale of densities, it is only from 1 to 0.500.
The quantities of the one scale continually fall behind those
of the other at a rate that must bring them to zero, whatever
be the gradation of the latter. If we divide 3816 fathoms,
the whole height ascended, by 40°.8, the difference of tempe-
rature, the elevation for depressing the thermometer one de-
gree will come out equal to 95 fathoms: and if we suppose
that the same rate prevails in all parts of the atmosphere, the
whole height will be 266 x 95 fathoms, or nearly 29 miles.
The observations of the twilight show that this is less than
the true altitude ; and hence we must infer, that the ther-
mometer falls at a slower rate in the higher, than in the lower,
parts of the atmosphere. But, taking the observed rate of
95 fathoms for the first 40 degrees, and allowing, on an ave-
rage, a double, or even a triple, elevation for the remaining
226°, we shall still find that the atmosphere will extend only
to a moderate height above the earth’s surface.
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2. The first investigation that presents itself in the problem
of the refractions, is to find the velocity of light at any given
height in the atmosphere. The only physical principle wanted
for this purpose, is the refractive power of air according to
its density. HAuksBEE first determined by experiment, that
air refracts light in proportion to its density ; and this result
has been confirmed by succeeding philosophers. There is
even good reason to think that the conclusion of HAUKSBEE is
not materially affected by the variable quantities of aqueous
vapour contained in the atmosphere at different times. Ad-
mitting, then, the principle we have mentioned, we must
conceive that the light coming from the sun, or from a star,
moves in vacuo with a uniform velocity till it reaches the
atmosphere. It is there deflected from its course by the
spherical and concentric shells of air it meets with, each of
which acts upon it with a force perpendicular to its surface,
and directed to the centre of the earth. Now, as all the light
enters the atmosphere with the same velocity ; and as the
deflecting forces are of the same intensity at the same dis-
tance from the common centre to which they tend ; it follows,
that the new velocities acquired by the action of the forces,
will be independent of the direction of the light’s motion, and
will be the same at the same distance above the earth’s sur-
face. Let a denote the radius of the earth ; z, any height in
the atmosphere ; and p, the density of the air at that height :
conceive also a shell of air having the thickness & z, and the
increased density e = dp; then we shall have to consider the
relation between the velocities of light when it passes out of
a medium having the density p, into another medium having
the density ¢ 4 dp; or, since the density common to both

MDCCCXXIII. s H
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media has no effect in altering the velocity, we may consider
the more simple case, when light passes out of a vacuum into
a medium possessed of the density dp. It is to be observed
that the forces, with which matter acts on the rays of light,
extend to distances that are imperceptible to our senses, and
incapable of being measured ; and, on this account, what has
been said is modified in no respect by the thinness of the shell
of air. However small &z, the thickness of the shell is
supposed to be, it may still be considered as infinitely great
in comparison of the range of the corpuscular force with
which the light is refracted by the air. If we now put v for
the velocity with which the light enters the shell of air, and
express by an equation the physical principle already men-
tioned, namely, that the refractive power of air is propor-
tional to its density, we shall get, ‘
(v du)*—v*=Kdp*

K expressing a constant coefficient to be determined by ex-
periment. And, becausev and p are functions of the same vari-
able quantity x, the foregoing equation may be translated into
the language of the differential calculus, in which case it will

become,

) d-v"=Kxdp:
and, by integrating, :
v=1+-Kp,
v=v1 4 Kp;
unit representing the primitive velocity of the light in vacuo.

Let us next consider the trajectory described by the light
in its passage through the atmosphere. Conceive two per-
pendiculars to be let fall upon the tangents drawn to the

* Newron’s Optics, Book z, Part 3, Prop. X.
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trajectory from the points where the light enters into, and
passes out of, the spherical shell of air; then, if y represent
the latter of these two lines, y 4 dy will be equal to the
former. The distance of the intersection of the two tangents
from the centre of the earth being a 4z, v/ (a 4=z )*—)* will
be the distance of the perpendiculars from the same in-
tersection ; and, on a circle described with the radius
V(a4z)—y, dy is the arc that subtends the small angle
contained by the two tangents ; wherefore, if dr denote the
measure of the small angle, we shall have

dy=drxv/ (a4 z)*—y*;

and,
ey .
Vietay—yp

Again ; because the light is continually deflected in a direc-
tion tending to the centre of the earth, equal areas will be
described round that centre in equal times by the motion in
the trajectory; but the areas described in equal times are
proportional to the velocities multiplied by the perpendiculars
falling upon the tangents from the centre of forces: where-
fore, the product v x y will have always the same magnitude
at every point of the curve. Let v be the velocity of the
light at the surface of the earth, or at the point where the
trajectory enters the eye of the observer ; and put y' for the

perpendicular upon the tangent drawn from the same point
of the curve : then,

d

vxy=uv'xy
S
Y= X Y.
Suppose also that 4 is the apparent zenith distance of the star,
or the angle which the last-mentioned tangent makes with
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the vertical of the observer, then y=aSin.§: again, if
denote the density of the air at the surface of the earth, we
get, by the formula before investigated, v =1v'1+4 K/,
v=11 4 Kp: wherefore
J— _”:_ /— i 1+ KF’ .
y=-—xy'=aSin.0x, /1+Kp ;

and, if we put o =1 ..._-;%,
H 1+K.g'
y=aSn.§x, /_-_——.—_I+KP,__KP,N,

— 1K€
a@= 14K p’ ’
__ aSin. 8
“Vi—zau
Let this value of y be substituted in the expression of dr al-
ready obtained, then

dr= adw % Sin. 6

fEee /(1 +2)* (1—2a0)—Sin.0
Whatever opinion we adopt concerning the height of the

and finally,

atmosphere, —z- may be considered as a very small quantity.

For, in every hypothesis, the density of the air is attenuated
so fast in ascending, that it may be taken as evanescent at an
altitude extremely small in proportion to the earth’s radius.
The quantity « is also a very small fraction ; and hence it
will be sufficiently accurate if, in the foregoing expression,
we put

xz\? z .
(1 +7) (1—2aw) =142 ——2aw;
by which means we obtain,
dl" adw Sin. 8

= X N
le—2aw X
‘/Cos.‘e-}-z ——2Zaw
a

In this formula » and r increase in ascending above the origin
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of the curve placed at the eye of the observer; and, at
any determinate height, 7 is the angle contained by two tan-
gents drawn from the extremities of the intercepted arc; or
it is the sum of the angles which the two tangents make with
the chord of the arc. When the curve is continued to the
boundary of the atmosphere, or at least so high that the air
has no longer power to deflect the light from its rectilineal
course, the chord may be considered as parallel to the tan-
gent at the remote extremity ; and then 7 is the astronomical
refraction. The formula is perfectly general, and will apply
in all hypotheses of density, since no particular relation is
established between the variable quantities » and x.

3. But there are relations between the pressure of the air
and its density and temperature, which must be attended to
in the solution of this problem. Let p’' and + denote the
barometric pressure and the temperature on the centigrade
scale at the surface of the earth, and put the same let-
ters, without the accent, for the same things at the height
then, if 8 == 335, the expansion for one degree of the thermo-

meter, we shall have
o
In order to prove the truth of this formula, we may sup-
pose a volume of air to be inclosed in a manometer, the
pressure being p', the density ¢/, and the temperature +': then,
if the pressure be changed to p, the temperature remaining

the same, the density will become,

LA
. P’ ) P .
and, if the temperature be now likewise changed to 7, the

new density will be equal to
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FINRE - 223

I X 1 + ﬂT X P
but we have put p for the density when the pressure is p and
the temperature 7; wherefore,

p _14p
,X!__*_BTXP-—-‘-E’

which is equivalent to the foregoing formula.
From what has just been proved we get,

/

r__ P
(r+ 8y~ (1 +87)p’
which shows that the quotient of the pressure divided by the
density reduced to the fixed temperature zero, has always
the same value. Therefore if / denote this constant value,
we shall have,

p=Ix (14B7) xp;
and /is a quantity to be determined by experiment.

Suppose now that a tube or cylinder of air extends from
the surface of the earth to the top of the atmosphere; then
the barometric column p, will be equal to the pressure of all
the air in the cylinder above the height x. Let the barometer
be lowered down through the small space dz; the mercury
will rise a small height dp ; and we shall have

dp = —dx x p,
an equation which merely expresses that the small column
of mercury dp is equivalent to the weight of the column of
air having its length equal to dz, and its density to p. Divide
the left side of the equation by p’, and the right side by the
equivalent quantity / x (1 = 87') x¢'; then,

—_ 2
¥ xR XY
and by integrating,
Ny Y
L4 p) "

’%l\,
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In order to simplify, I shall now write P for the relative

p

pressure -7, and likewise put s== then, observ-

L S
Ix( 467’
ing that —:— = 1 —w, what has now been investigated will be

expressed by these equations, viz.

P=f—~ds(1—w) 'L

1B
P——_—1+B'Hx(1_w) (A)
&
SETr ey J
The quantity - _T_g:, is equal to the proportion of the relative

elasticity of the air to its relative density ; and it may depend
upon the moisture diffused in the atmosphere, as well as
upon the temperature. Whatever be the true form of this
function, it must be evanescent at the boundary of the atmos-
phere. The reason of this will readily appear, if we consider
first, that, at the surface of the earth, the elasticity of a given
volume of air is incomparably greater than its weight ; and,
secondly, that in a finite atmosphere, there must be an equa-
lity between the same two forces at the upper surface. With
regard to the density, we may form two suppositions ; it may
either be evanescent at the top of the atmosphere, or it may
have some very small finite value. But in reality we know
that, in ascending, the density of the air decreases with con-
siderable rapidity ; so that if it do not decrease so as to be
absolutely evanescent, it must finally become so small, that
we may safely consider it as equal to zero.

To the equations already investigated we must add ano-
ther, which is requisite to the solution of this Problem, al-
though it has been universally neglected. By equating the
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two foregoing values of p, we shall obtain
1+ Br ____f—ds(l-—,m) .

14 B+ 1—0 ’
and by taking the fluxions,
d I+Br\‘
(! do  f—ds(1—a).
& =1t Ty

dz .
—_ . . 4 ecreases when
but ds = A therefore, observing that = dec h

Z increases,

___‘led'r —“1+%"!_d‘9(1-w)‘

v = (1—w)= >
now, at the surface of the earth, P=f—ds (1—w) =1;
wherefore,

3—: (when s=0) = 1——le%.
Suppose that yu represents the height through which the

thermometer must be carried at the surface of the earth, in
order to depress the mercury one degree; it is obvious, that

I . . .
— s the numerical value of g;—: wherefore,

'—jig(making s=0)=1 —-%l (B)

The quantity %’ is derived from the function of the height
that represents the decrease of density. It appears that the
value of it at the surface of the earth depends upon p; and
terrestrial observations show that this quantity is subject to
great irregularities, which are not well understood. It is
found that the refractions near the horizon are liable to vari-
ations equally irregular and unknown. There can be little
doubt that both these effects are produced by the same causes,
which disturb the gradation of heat, and the arrangement of
the strata of air near the earth’s surface.

It will now be necessary to resume the former value of dr,
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&

and in it to substitute s for x. Now, s = T =
A + - 8')

% m—i—-—-—-&,): if therefore we put i = , we shall get

is=-=, and
a

3 dw Sin. 0
dr=—-2= — .
r I—Zuwx\/Cos."9+zis—zam’

and, by expanding ———

—20w’
dw
dr==aSin.f x L S—
V' Cos 20 2is—z2aw
. d
-4 & Sin. 6 x e

VCos - 2i5mm 20w
-+ &c. '

The second term of this expansion has to the first a less pro-
portion than that of « to 1, while » increases from o to £
and a greater proportion, while » increases from % to 1:
and hence, on account of the smallness of «, we may com-
bine both terms in one, viz. |

— . ; dw »
= (1 + “) Sm. ¢ x v/ Cos.*0 -+ 208 = 2 a0 (C)

4. In order to appreciate justly the several formulee on
which this theory depends, it is necessary to know the values
of the quantities that must be found from observation. Of
these, the coefficient & has been determined both astronomi-

cally, and by direct experiments on the refractive power of
the air. From the comparison of a great number of astro-
nomical observations, De Lamsre found K ¢ == - 000588094,
at the temperature of melting ice, and the mercury in the
barometer standing at 29.921 English inches. In the same
circumstances, M. M. BioT and AraGo, by very accurate expe-
riments on the refraction of air inclosed in a prism, found
000588768 for the value of the same quantity. Adopting
MDECCCXXIII, : 3l
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the number of DE Lamsre, which'is that employed in the
calculation of the French tables of refraction, we get

— sk
14 Kp'

and, by reducing to the mean temperature of 10° on the cen-
tigrade scale, or 50° of FAHRENHEIT, and to the standard
barometer go English inches, we finally obtain
2 == .0002835,
Log. — 4.4525531.
From a numerous set of observations Dr. BRINKLEY has de-
duced a value somewhat less than the preceding ; and hence
it appears, that there is still some small degree of uncertainty
in the determination of this coefficient. It is to be expected
that the unequal mixture of moisture, by altering the density
of the air, will produce variations in the value of «. But it
has been determined that, when a quantity of aqueous vapour
is added to a volume of air, the density is diminished nearly
in the same proportion that the refractive power of the
vapour is greater than the refractive power of the air. A com-
pensation is thus effected ; and the mixed medium is hardly
different from dry air of the like density in its action on light.
The value of / must be found by means of the formula
p=1Ix(14B7)e.

Here we must conceive that p is measured in parts of the
density of mercury ; and, as (1 -4 37)p is the density of the
air reduced to the fixed temperature zero, the equation merely
expresses that the density of air is proportional to the pres-
sure when the temperature remains unchanged. Now, M. M.
“Bror and Araco have found that the specific gravity of air
under the pressure of 0.76 metres, and at the temperature of

—=.000293876 ;
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melting ice, is to the specific gravity of mercury at the same
temperature, as 1 to 10467 : hence wehave p=0.76,p = TSZ:'E;’
r==0; and, by the substitution of these numbers, we get,

/== 104677 x 0.76 nietres,
or, in English fathoms,
! ==4349.8. .

This is the length of / at the temperature of melting ice;
but, if the temperature be changed, it will vary directly as
the volume of the air, and inversely as that of the mercury.
If now we take for the radius of the earth (=a), a mean
between half the polar axis and the radius of the equator,
and reduce the foregoing value of / to the mean temperature
of 50° of FAHRENHEIT, we shall get,

! = 4.504.8
4504 } fathoms
a==3481280 \

l
—==.001294; Log.—3.1119843.

The value of w, or the height through which the thermo-
meter must be carried at the earth’s surface, in order to de-
press the mercury one degree, has not been determined with

much certainty or exactness. The greatest irregularity is
found to prevail, in regard to this element, in observations
made on different heights and at different times. This is, no
doubt, to be attributed in part to local peculiarities affecting
the thermometer. The most accurate way of determining
this element would be by means of observations made in
balloons elevated to moderate heights. Ramonp, from 38
barometrical measurements, makes the mean depression for
one centesimal degree equal to 164.7 metres, or 9o fathoms:
HumBorpT found 161 metres, or 88 fathoms; and the ascent
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of Gay Lussac gives 174 metres, or 95 fathoms. With these

several values we shall find %-l-equal to 0.188,0.192, and

o.177 respectively ; and we may adopt -;— as an approximation.
Thus,
LY.
_ 1< 5
% (making s==0) == 1 — =4
5. In one particular case of this problem we are possessed
of many skilful observations made in the course of the trigo-
nometrical surveys of England and France. We allude to
the terrestrial refraction, which regards that part of the tra-
jectory described by the light in its passage from a terrestrial
object to the eye of the observer. As this case is immediately
deduced from the equations that have been investigated, the
comparison of the result with observations may, in some de-
gree, instruct us how far the theory will agree with nature.
We have found this equation, viz.

%" (making s==0) = -‘;f—;
which being accurately true at the surface of the earth, it
may, without sensible error, be extended to a small height
above the surface. In the case of the terrestrial refraction
we thus have,

==~

5
and, if this value be substituted in the expression of dr, we get,

ids

= — 5 °
\/Cos.zé 4 2 (i f—u) s
By integrating

_______‘;_—X 2 Sin. 6 {\/(,05194-2(2---— w)w——- Cos. 0}

z—-

dr=¢a Sin. § x
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and, if the observed object be just 90° from the zenith, then

rem ey V2

5 \/i-- %“'

X o ) ‘
GEE) and neglecting the effect of temperature,

s==-. Letybethe angle at the earth’s centre contained

by lines drawn to the observer and the object ; then, 2 being
the height between the surface of the earth and the tangent
to that surface drawn from the place of the observer, we have

Now § ==

2%
a.v’=2x; and hence 2s == -‘-’l—u

%

y"
= consequently,

¥

C e
N// w
T o o
2

¥

T—'—l
- ==

s.! e

%X

vife

ml.p

and, in numbers,

10.36°

.

2
Now ris the sum of the angles which the tangents, drawri
from the extremities of the arc intercepted between the ob-

server and the object, make with the chord of the arc; and,
as the curvature will vary but little in a small extent, the

two angles may be considered as equal, and -2- will be the

refraction at the eye of the observer. When the terrestrial
refraction, as found by actual observation, is compared
with the angle at the earth’s centre, it is very irregular,

. I I . °
varying from —to e In a case, where such excessive

irregularities occur, no great confidence can be placed in
a mean, even of a great number of observations; more
especially as local peculiarities have so much effect, that the
mean at one place does not agree with the mean at another.

In the English Survey, — is allowed for the terrestrial
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refraction ; the French mathematicians make it equal to {;;

and the result found above falls between these limits.

6. In the expression of the refraction (C), the quantities
7 and « are very small fractions ; and cos.® § varies from 1 to o
as the zenith distance increases from o to 90°. For a con-
siderable extent from the zenith cos.* 8 will greatly exceed
zand « ; and so long as this is the case, we may find the
value of r by expanding the radical quantity in a series.
Proceeding in this manner, and retaining only the two first
terms of the expansion, we shall get

dr=a(1+e)Tan. x {dw—"20m20d0 ]

and, by integrating from w =0 to v =1,
r=caTan.fx {1 +z-———3‘f—%€)%2°},
the terms multiplied by =, 7 «, «* being alone retained. Now
s(1—w)=[fds(1—uw)—[sduw;
and because s (1—w)==0, both when » =0 and w =1, if we
take the whole integrals between these limits, we get
Ssdo=[ds(1—w).
But fds(1—uw) between the limits w =0 and » =1 has the
same value that /— ds (1— ) has, between the limits » =1
and w ==0; and this last integral is equal to the whole pres-
sure, or to unit : wherefore
Ssdw=1;
and, by substitution,

i
r==ea'Tan.d x{l -+ a:-—m}.
By means of this formula, which was first found by LarLAcE,
the French tables of refraction are computed as far as 74°

from the zenith., The quantities z and ¢, depending only upon
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the temperature and pressure of the lowest stratum of air
and upon the radius of the earth, the formula involves no
hypothesis concerning the gradation of heat or density. But
if the expansion of the expression of the refraction be ex-
tended to more terms, we meet with quantities that cannot
be integrated without supposing a relation between s and w,
that is, without introducing a supposition respecting the con-
stitution of the atmosphere. |

The ultimate deviation of the light of a star from its
primitive direction depends upon the augmentation of the
velocity which the light acquires in its passage through the
atmosphere, and likewise upon the different obliquities with
which it crosses the several strata of air. Now, the first of
these two things is the same for all stars and for all constitu-
tions of the atmosphere ; for it is the same when the density
of the lowest stratum of air continues the same. But the
second is different for stars that are differently placed with
regard to the zenith: and it varies also with the densities of
the strata that compose the atmosphere.) It is therefore cer-
tain that the formula of Larrack is rigorously exact in no
case whatever. But when a star is near the zenith, the varia-
tions in the obliquity of the light in passing through the
several strata of air, are inconsiderable ; and the formula will
be nearly true. However, there is always some error, which
accumulates as the zenith distance increases, and will at
length become sensible. Drramsre tells us that in comparing
the observations of different days, he found errors arising
from refraction that amounted to 6" or 7" at 75° from the
zenith ;* and the observations of a very accurate astronomer

* Astron. Vol. 1. p. 320.-



432 M. IvorY on the astronomical refractions.

show that similar inequalities are perceptible much nearer
the zenith.* Now these inequalities do not arise from any
thing imperfect in the manner of observing ; they are un-
doubtedly produced by alterations in the remote parts of the
atmosphere, which do not affect the barometer or the ther-
mometer placed at the Observatory. It appears, therefore,
that the peculiar constitution of the atmosphere has a per-
ceptible influence on the refraction at 75° from the zenith;
and when Laprrace’s formula is made to extend to 74°, it is
carried to its utmost limit.

However mutable we may suppose the condition of the
atmosphere to be, there must be a mean state equally removed
from the opposite extremes. Now, a table of refractions that
should have this mean state of the atmosphere for its basis,
would be the most advantageous of any. For although, with
respect to single observations, the errors of such a table
might be as great as in some other hypotheses, yet, in a
numerous set of observations made at different times, so as
to embrace all the usual changes, the inequalities of an op-
posite kind would counterbalance one another. But, to a
certain distance from the zenith, LapLack’s formula is suffi-
ciently exact for practical purposes ; and it has the advantage
of taking away the necessity of having recourse to precarious
suppositions respecting the constitution of the atmosphere.

As the formula we are considering contains nothing except
what is common to every atmosphere, it must be deducible
from the hypothesis of Cassint; and it may be worth while
to establish this point by a strict investigation. CassiNI sup-
posed that the earth is surrounded by a pellucid spherical

# Dr. BrinkLeY’s Paper, Philosophical Trausactions, 1821, p. 342,
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shell of uniform density, reaching to a certain altitude, and
possessed of the same weight with the real atmosphere. The
height of this homogeneous stratum of air will therefore be
equal to the quantity /, before investigated. Suppose that the
light of a star is refracted at the upper surface of this atmo-
- sphere in a straight line directed to the eye of the observer,
and making an angle 6 with the vertical line; then the per-
pendicular let fall upon the refracted ray from the earth’s
centre will be equal to aSin. §: and, in a right-angled triangle,
of which a <=/ is the hypothenuse, 4 Sin. § one side, and ¢ the
angle at the top of the atmosphere opposite to that side, we

have,

aSin.§ __ Sin. __ Sin.0

at+l U7 1+4:
1+7‘—

Sin. ¢==

’

VCos®b 4 21 4 1>
141¢ ’
Sin.0

\/Cos."9+zi+i".

It is manifest that ¢ is the angle of refraction ; and if 7 be the

Cos. 0 =

Tan. Q=

refraction, or the angle between the incident and refracted
light, ¢ 4 7 will be the angle of incidence : and Sin. (¢ 4-7)
will be to Sin. ¢, as the velocity of the light in air to the ve-

locity in vacuo, that is, as V14K to1,oras —\7—l—-—to 1:

T2

wherefore,

Sin. (¢ 4 )= ;:?’_
Cos.(¢+7) =Y % g2 i,‘;sl.’_q—) '2—: .

But,
Sin. 7 =Sin. (¢ + ) Cos.¢— Cos. (¢ -4 7) Sin. ¢;
therefore,
MDCCCXXIIL “ s K
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Sin. ¢ Cos. ¢ —Sin. ¢ V Cos>p—20
Vi—za

Now r=Sin. 7 4 = Sin.? 7 4+ &c. ; and, at the horizon where r

Sin. r =

is greatest, all the terms of the series after the first will not
amount to ;%5 of a second : thus 7 = Sin. r, and
Sin. ¢ Cos. ¢ — Sin. ¢ V/Cos*p—za
Vi—2za 4 ’
by expanding the radical quantity in the numerator,

Tan. ¢ 1. 1, o s | at
\/1_..2“ { +2 Cos'q: 2 Cos.4:p+§' Cos.e¢+&c.}-

When Cos. § == o0, Tan. ¢=—‘—/l——.—, and =—r-— Co e ="2‘17;
217

and hence, even in this extreme case, the term last set down
of the foregoing series, and all the following terms, may be
rejected ; therefore, because

r==

== ——

1
T =1 - Tan.* ¢, we have
+ — 2
vVi=
and farther, by rejecting the Very small quant1t1es «® Tan. ¢,
«’Tan%e, 4* Tan.’ ¢, &c. we obtain, with sufficient accuracy,
r= (a4 3a*)Tan. ¢+ “;Tanﬁ(p +°—‘;Tan.’<p;
and finally, by substituting the value of Tan. ¢,
(o& -+ 7-‘3 5&7‘) Sin. 0
§Cosrtgzigin}®
225in.% 0
"'!"";‘ : T li
{Cos.’9+ 21 +z"$ 2

g 238Sin.5 0
+ 5

5.
{Cos.’9+zi+i2} 2
If we put Sin.§==1, Cos. § =0, we shall obtain the hori-
zontal refraction in the hypothesis of Cassini, viz.

@ 3 | S i«
r=gex{tt et Syt )

7

==Tan. (p-]—z“ +o

R —
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To find the refractions near the zenith, we must develope
the radical quantities and retain, as formerly, such terms only
as are multiplied by «, a7, 2°*: in this manner we get,

r=aTan.§ - { 1 +‘—i—a——-—65—::;—5 + -i;f-Tan.zé)} ;
or,
Cos.> 0
and this is no other than Larrace’s formula, which is thus
deducible from the most simple, as well as the most compli-
cated, hypothesis.
The same formula may be thus written, viz.

r:a(1+a).{Tan.9 ( - )2"“(1+“)Tan9"Cos };
and, the second term of this expression being inconsiderable

r=¢zTan.9x{1+w ibe

in comparison of the first, we get, for an approximate value,
r=a(14)Tan. §; and again, if we substitute » for
(14 «) Tan. 6 we shall obtain,

i—ha
P
r=a(14a)- {Tan.é—-—-nrxd";gn'e}-

But this value of 7 is no other than the two first terms of the
developement of & (1 4« ) Tan. (§ —#n7) ; and hence,
r=e(t-4a)Tan (§—nr),
an expression which must be considered as an approximation
of the same order with the formula of LaprrLAcE, and it must
be restricted within the same limits. It is to be observed,
however, that the two forms of expression will not be en-
tirely equivalent unless the same values of « and 7 be, in every
case, substituted in both; which implies that » will vary a
little according to the pressure and temperature of the air.
The formula for the refractions near the zenith is common
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to every constitution of the atmosphere. In proceeding far-
ther, our reasoning must comprehend all the varieties of
temperature and density that actually take place in nature
from the surface of the earth to the utmost height at which
the air possesses power to refract the rays of light. Even if
we should succeed in this, it would be chimerical to expect
that a formula can be found that would apply to single ob-
servations without great occasional inequalities. This is not
to be ascribed to any fault of the theory ; it arises from the
nature of the observations themselves. If we examine a set
of observed refractions, it will be easy to discover instances
in which the true refraction has diminished when, according
to the instruments employed, it ought to have increased ; and,
the contrary. The refractions are therefore affected by cir-
cumstances of which the observer has no intimation, and
which cannot enter into any theory. The real causes of such
anomalies is undoubtedly the irregular changes that take
place in the remote parts of the atmosphere, which are not
indicated by the barometer or the thermometer. We must
conceive that the atmosphere is perpetually oscillating about
a mean state, which it ought to be the aim of theory to dis-
cover. The test of success in the research must be looked
for, not in the perfect agreement of the theory with every
single instance, but in the disappearance of the unavoidable
errors in a sufficient number of observations made at different
times.

7. There is no ground in experience for attributing to the
gradation of heat in the atmosphere any other law than that
of an equable decrease as the altitude increases. This law
prevails very nearly at least to the greatest heights to which
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we have been able to ascend. The mean elevation for one
degree of depression of the centigrade thermometer is very
nearly go English fathoms ; and in the great height ascended
by Gay Lussac, rather more than 4% miles, the same quan-
tity comes out equal to 95 fathoms. To this great extent
the law of a uniform decrease of temperature holds good,
without much deviation from the truth. It therefore seems
to be the assumption most likely to guide us aright in ap-
proximating to the true constitution of the atmosphere.

The law we have mentioned is expressed by this equation,
viz.

14 B7 1 $

.
s S—————

148+ m-41°
m -1 being a constant quantity which, in the case of nature,
will be determined by equation (B). Now if we substitute

1+ B
148+
two values of P, we shall get,

(1=} (1—w)=/—ds(1—0);

and, hence,

this value of

in the formula (A), and then equate the

do __ ds m
1-—-(.:'—_'m+lx1 s 2
m—+1
consequently,
1—w==(1— : )m

Thus we obtain,

m- 1
s m
1— == (1-—m+l)
1tBr S
I+87 mir

In these equations, the hypothesis of Cassint corresponds to
m==0; that of a density decreasing uniformly as the altitude
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increases, to m==1; and, when m is infinitely great, the
same equations become,
P=c¢"*°
1—w==C,~"

148+
¢ being the base of the hyperbolic logarithms ; and they now
belong to an atmosphere in which the density is proportional
to the pressure, and the heat is the same in every part. These
three suppositions, with some modifications of them, are the
foundations of all the theories that have been advanced with
regard to the variations of density in the atmosphere. They
are the simplest cases that come under the foregoing formule,
and likewise those that are suggested by the most obvious
physical hypotheses. But in reality these considerations afford
no good ground of preference; since, whatever value we give
to m, the general laws relating to the heat and pressure of the
air, are equally well represented. The refractions near the
zenith will likewise be the same, whatever number m stands
for. 'We may therefore adopt that value of m which will
give the true refractions near the horizon ; or that one, which
will satisfy equation (B), in which case the gradation of heat
will coincide with that actually observed at the surface of the
earth. More especially if, by the same value of m, we can
conciliate both the above-mentioned conditions, we may con-
clude that the solution of the problem must agree well with
observation. But, in order.to continue this research, it is
necessary to find a method that will enable us to compute the
refractions for any proposed value of m.

=1,

If we make z = - then
m--1
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S=m-1-2,
1—o=(1—2),"
w=1—(1—2),"
zz's—-zawz:gi(m-l—l)z-—za{1—-(1—-—z)’”}:
and, again,
" A==,
a=m=f1—A
Y=1—(1—g)"!
2is—2aw=27ia%—2IA(1=—2)Y
do=mdz(1—2z)"""
The expression of the refraction (equation C) will therefore

become,
. . mdz(1—2) .
r=ea(1+4 “) Sin. § x V' Cos2 0 2iaz—zin(1—z) b
and by expanding the radical quantity,
A=vCos’ 04+ 27ax
—— ; mdz(1—z)m=1
re=a (1) Sin. 0 x {'/‘_.__—._.A

mdz(1—z)"

+ia -
o+ .z‘zx’.fmdz(l—~z)sm+ 1y
+ &ec. :
And, in this expression, it is not necessary to integrate ge-
nerally, but merely to find the definite integrals between the
limits ==0 and z==1.

VXt §

(l__z)m + n_l\l'"

Now by taking the fluxions of the quantity T
we have
(1~——z)m+"""l-.l," . dz(l—z)m"'n-'lq/”
AZR—1 =_'(2'n-—1)'za'f Azt 1
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dz d-(1—zymtn—Iign
+fA z2n-—1 ¢ dZ ?
and because the function without the sign of integration is

evanescent at both the limits z==0, 2 = 1, we shall get, with
regard to the definite integrals,

fdz(l—z)m+n~r¢n__ I 1 J‘ dz .d-(x-—z)m'i'n—lq,”.
A

———
Snm— * T

2n 41 zn—1 za Azn—1 dz
By operating in like manner with the quantities — .
. AZR—3
mbn—1ign : M Bl ym
d: (=—n)"+ ¥~ and ! Ldd (1—=n" % Yo, we
dz ) AZR—S5 dz*
shall obtain, |
dz .d-(l-—z)m'l'n-xq,n_ i i dz ddo(l-z)m."'"—‘q,"
AZn—1 dz T z2n—3 ia, AZT—3 * az°
f dz .dd-(:-—z)""""—‘\p”‘___ I 1 dz d3(1mz)MHn=—1yn
AZP—3 da* T 2ne—jg ';_a.,_/;zn—s ' dz3

And if we continue the like operations till we come to the
ar. (1—-z)m+”'—'¢”

quantity, — . , which is no longer divisi-

: dz"
ble by ¢ ; and then combine all the results, we shall get,
dz(1—z)?H0=14n 1 1 jdz A% (1) F BT 0
RELE X T 1.3.5.zn=1 "2t A dz*

By the application of this formula all the integrals in the
value of r will be reduced to others in which the exponent of
A\ is unit ; viz.

r=“(1+“)Sin.9x{f’”dz(l-z)m""

A

A a.dz
A j‘dz dd.(1—z)™+1y2
- em .= .
1.2 A a* dz*

+ A O //2 ii-z-'d's(l_z)m_!.z"l’s
1.2.3 a a%ds

-+ &ec.
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In the extreme case when m is infinitely great, we have

and, 1 —w==("%;

r=ao(1-4a) Sin.@x/vc
. 08,
and if we expand this expression and apply the like reason-

ing as before, we shall obtain
A=VCos. 425

r=ua(1-4a)Sin.dx {fdsAc"S

+}\. C_l_i.d.c_s(!‘— C*S)
A ds

a? ds dd.c—5(1==c—5)?
+1.z" A ds*

+ A3 fds d3.¢=S(1 —c—¥)3
‘Ja ds3

1.2.3

- &c.

an expression which has already been given by Kramp and
LaprLACE, and is no other than the limit of the foregoing for-
mula when m is infinitely great.

The calculation of the refractions is now reduced to such

dsc™*S

204 255 24n (1—c5) |

integrals as f_‘ijﬂ:zﬂ::, 2 being any number; and the

valuing of these must next engage our attention.
8. In the first place, when § == go°, as in the case of the

refractions at the horizon, then Cos.? § =0, and A =V¥2 72 2 :
now, put z = ¢*, and
Jlra=a? T = 2 fdi(1—e)' T,
— —

Vaia
the integral being taken between the limits =0 and t=1.
When p is a whole number,
_p\P=1__2.4.6...2(p—1),
fdt(l t? '7'3.5.7....219—-1’ '
which will apply conveniently in all cases unless when p is a
great number.

MDCCCXXIII. 3 L
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When p is great, assume

.Z"

1 e f= ¢ PV

then

& I z* 1 28 1 o
=

=i e T a e T
and by extracting the square root,

3 28

Ppr=—1

9
128 (p—- 1)3 + 92160 (p —1)* — &e. }

vp..l

Hence,

o\P =1 dac _____ __f_ 25 x* — &c. 1.
fdt(l—t) ‘[\/p-——l {1 Cp—1 96 (p—1)* } ’
now, the limits of the integrals belng t=0,t==1, and r==0,
= ; we get

V=
* P—‘,"— ! il ) ——-—3- —_}_._
JAdt(1—pP " =2 V.p__lxgx R
25 1 10§ 1659 1
+ 128" (p—1)* " 1024 (p —1)3 + 32768 " (p—1)* &C'}°

By employing proper reductions, any proposed case may be
brought to another in which this series will converge swiftly.
In the next place, when Cos.” § is not evanescent, put
g=u—¢ (4—u);
then,
(1—2) T l= (1 —u)' 7 (1 fu)P T
A=V Cos -t 2ia(1—¢)ud2iacu:
in order to determine e, assume,
A=Cos. 0 +euvVoia,

then,
Viti_ 2

CTos.0 —1—¢

dz — ze

a - Vzia

x dil.
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Hence, :
de(l P~ 2e pdu. (1—w)P~ " (1 u)?™"
consequently,
Az —z)P — Y P =X
p‘[—'—l—A—-—- —\/z X{Pfdu(l u)

Fe.p.p—1 fdu u(1—u)? ™
+ep.p—1. 2 fdu w1~ u)p—"'
-+ &c.

and, by integrating between the limits u =0, u =1,

p— s

pflu=atT o 2 (o qeota g rotiet oy e ).
This series will stop when p is a whole number ; and ¢ being
always less than 1, it will converge fast unless when p is a
very great number.

9. The horizontal refraction has not been-determined by
astronomers with much exactness. The quantity most gene-
rally adopted is 33’ 46".3, which is that of the French tables,
and is very little different from the determination of BrRap-
LEY : it supposes the mean temperature of 50° of FAHRENHEIT
and the barometrical pressure equal to 29.92 English inches.
At the same temperature, and with the mean pressure go
inches, it is equal to

2031".5.

If we would compare with this the horizontal refraction in
the hypothesis of Cassini, we have only to substitute in the
formula found in No. 6, the values of « and  given in No. 4:
the result will come out equal to

’ 1218".6.

The case, when the density decreases in the same propor-

tion that the altitude increases, corresponds to m==1 in the
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formula of No. 7; and ¢ being = o0, we get,
r=ua (14 ) Sin. § x
and, at the horizon,
—_ za (14 a)
r=a(i+a). [E== Vits

ztaz

Now, a being equal to m 4 1—2, we have in this case
a==2— A; wherefore, ‘
___2ac(l+w) —_ a (1 a)

“NZi(z =) 1/z

In both these hypotheses, although the refractions near the
zenith agree with nature, yet, at the horizon, they fall
greatly short of observation.

At the other extreme, when  is infinitely great, the term
which is multiplied by a* in the expression of the refraction
given in No. 7, is thus expi‘éssed‘, viz.

ds 3 c"‘s(‘x —-c"“l)"_"
I.2.3.. Xf d st

but, at the horizon, A = /zis * therefore,
¥ el opds dc=5(1=c=5)"
1.2.3..8° 475 Vs d st :

and, by expanding and performing the operations indicated,
the same term will become

-—28 n—1 ~— 38

- __ 3s__
Fn.2mnc +n.-—>-8%¢c F &c. },

the upper or lower sign taking place according as 7 is even
or odd. If now we put s==17*, and then integrate between
the limits £ =0, ¢ = , we shall get,
AB V"‘ _ 2" n—1 3% )
1.2.3...n szx {i1+n'v?vin' 2: 'V_3_+&c' 5

Hence if, in the case of the horizontal refraction, we assume
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“(“L“)VW , (n)n
re= — x{1+A 7\+A A )\.&C.}J

we shall have

A(”)= {+1+n.

1.2.3..%

N1

+n.

vz V3+&C' }

By means of this formula Kramp has found,

A® = 0.414214,

AP = 0.269649,

A®) = 0.200863,

A% — 0.160253,

AG) = 0.132935,

&e.
And with these values the horizontal refraction, in an atmos-
phere of uniform temperature, will come out equal to
2254 . 5.

In this case, therefore, the refractions, at the horizon greatly
exceed the truth, although at the zenith they agree with
observation.

It is therefore certain thatif we augmentm, by successively
putting m =2, m =3, &c., we shall at length find an atmo-
sphere that will agree with nature both at the zenith and the
horizon. But if we reflect that there must be an intimate
connection between the quantity of the refractions and the
gradation of heat in the atmosphere, we shall probably be
spared some repetitions of the same operations, by determin-
ing m so as to satisfy Equation (B). Now we have

1--—w=(1-— -—-S———)m
2

m 4t
consequently,
do m 4,
—d—s—(whens=o) =T = o

and hence m = 4.
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But in the formula of No. 7, when m = 4, a = 5 — A,
=1 — (1 — 2)*; and if we perform the operations indi-

cated, and for the sake of brevity put
d 2 (1 = 2)3

(2) dz(1—1z)°
Q'=7["2

(3) dz(1—2)°
Q" = IO[—Z_——'

(€Y dz(1— 5"
Q=1 3f__x__,
we shall get,

re=a (14 e)Sn b x {Q(’)-}-;\ = (_____Q(r)_l_Q(z))
4 50— 16003 4 1108)

1.2  §=—2 § =2
+ B 4 =300 4 21607 )—-396Q(3)+2109(4)
1.2.3 52 (5=2)"
+ &c.

This is the general value of the refraction when m==4: but,
at the horizon, we get

(1) 2 6
i x4 fdt (1 — ——— i A
Q V2i(5—n) Jat( V2i(5=—a) * 35
(2) 2 a \ & 2 i
= % 7 fdt (1 — ") = 024
Q V2i(5=2) f ( ) V2i(5—2) x 429

O 2 x10fdt (1 — 1) = B 5 131972

~ sz(s——?\) V2i(5—a) * 4-5l89
(4’)_._ 2 \12 2
e % 18 AL (1 e 17 )" =2 e 4194304
Q sz(S"‘"") f ( ) Vzi(s_A;\)x 1300075 °

and, with these values, the series for the horizontal refraction
will become
20 (14 a)

r= e {1-82857 4 A x0.46717

<+ A" % 0.18959
= 23 x 0.08836

-4 &c.
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and by completing the calculation, we shall get,
r==2041".3.

This result is very near 2031” 5, the horizontal refraction
usually adopted ; the difference 9”.8 being much less than
the uncertainty in the determination of this quantity. But it
will be more satisfactory to compare the refractions in this
hypothesis at all altitudes with those admitted by astronomers.
In order to find a formula for this purpose we have only

to substitute for Q("), Q®, Q®), the series investigated in
No. 8; and we may leave out the term multiplied by a3, since
the amount of it is less than 1” even at the horizon. Thus
we get,

————

V2i(§—2) — _2€
Cos. 8 1==¢é*’

a (1 + «)Sin. 0

¢ _3_ s sl
\/22(5—7\) { pairalie slralils o
13 e®
+ 5__;\ (20 + s+210 + zz+!32)
R 193 7 4. 94 ¢ 146
+ (s—?\)"( “+ s 273 ¢+ 243 ¢ )}

+
And, by substituting the numerical values, we shall find,

Tan. ¢ = 19.0462371 - Sec. § — 20.

" Log. of Coeff.

7= 1048.95 x Tan. L ¢ Sin. 0. .. 3.0207558
+4+ 658.21 x Tan? % ¢ Sin. §...2.8183661
4+ 252.92 x Tan*L ¢ Sin. §. .. 2.4029800
4+  59.64xTan’ L e Sin. ... 1.7755092
+ 11.61 xTanLl ¢ Sin. 0... 1.0648048

4+ 295 x Tan."2 ¢ Sin. 4. .. 0.4706968

But it is to be observed, that the logarithm of 293;’“ has been

subtracted from the logarithm of every coefficient, in order
to bring the formula to the same barometrical pressure with
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the Table of Refractions published in the Connaissance des Tems,
with which it is proposed to compare it. The comparison is
contained in the following Table:

Zen. Dist. Formula. Con. Des. T. Diff.
o 1} 14 ’ i o .
45 O 58.2 58.2 o)
60 1 40.6 1 40.6 o]
70 2 388.8 2 38.8 o
80 5 19.8 5 19.8 0.5
85 9 51.7 9 54.8 2.6
86 11 44.2 | 11 48.3 4.1
87 14 21.5 | 14 28.1 6.6
88 18 11.9 | 18 22.2 10.8
89 24 8.6 | 24 21.2 12.6
90 33 54.3 | 83 46.3 — 8.0

The formula agrees exactly with the table till 80° of zenith
distance, when the difference is 0”.5. But if we turn to the
Tables Astronomiques, published in 1806, by the French Board
of Longitude, we shall find that there is a small correction to
be subtracted from the mean refractions; and when this is
taken into account, the perfect agreement between the for-
mula and the table will be restored. In like manner there
are subtractive corrections to be applied at all other zenith
distances; and these increase very swiftly in approaching the
horizon. To explain the reason of this, it must be observed
that the French table was originally constructed for 32° of
FAHRENHEIT, and was reduced to the mean temperature of
50°, on the supposition that the refractions vary in the same
proportion with the density of the air; by which procedure the
change in their quantity that arises from the variations of the
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elementary quantities in the algebraic formula is neglected.
Had the computation been rigorously made, as BesseL has
since done in the table he published in 1818, the mean re-
fractions of the French table would have been less, instead
of being greater, than the results of the foregoing formula.
But it was the opinion of the eminent astronomers under
whose direction the table was published, that the refractions
near the horizon are too uncertain to require attention to
minute accuracy.

It appears therefore, as far as we can form an exact judg-
ment, that the formula approaches very near the true mean
refractions. It will afterwards be shown that the hypothesis
from which it has been deduced, likewise represents, with
considerable accuracy, the pressures and densities actually
observed in the atmosphere at different heights. But in one
respect there is a deviation from nature. According to the
supposition m == 4, the total height of the atmosphere is equal
to 5 x /, or about 25 miles, which, in all probability, is hardly
equal to half the real height. It therefore becomes neces-
sary to inquire what influence this circumstance will have
on the quantity of the refractions.

1o. Continuing to represent the density, or 1 — w, by
(1—=2)", we may assume

P=(1—f). (1—2)"*'4 f(1—2)*™,

f being an arbitrary quantity. Then, from the formule (A),

P
wegets.._/ ad;_':_'gf._ —; and hence

s=(m-1). (1—f) .24 2f. {1 -——-(1-——z)”‘},
= (=) i =T
and it is to be observed, that this last quantity is always
MDCCOXXIII, s M
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evanescent ‘at the top of the atmosphere, however great m is
supposed to-be. We likewise get

m _4_.-.

mELFm—Df 5

%‘-; (making s==0) =
wherefore
f=21.224
==
In this formula, f = o, when m == 4, which is the case already
considered ; and f= —:—r-, when 7 is infinitely great. Between
these two extreme cases, there are contained an infinite num-
ber of atmospheres gradually extending higher above'the

earth’s surface, till the to’gal height from being about 25 miles
becomes unlimited. In all these different atmospheres g% has

the same value when s==0; and therefore they all agree
with one another, and with nature, in having the same grada-
tion of heat at the earth’s surface. But the rate at which the
heat decreases is different in every one; being equable only
when m == 4, and in all the rest becoming slower as the height
increases. As all this is easily made out from the foregoing
equations, it will not be necessary to enter into any detail on
the subject.

When m is less than 4, f becomes negative: but these
cases are excluded, since they belong to atmospheres still
less elevated than when m = 4. They are excluded too for
another reason: for, although the rate of the decrease of
heat at the earth’s surface agrees with nature, yet it increases
in ascending, which is contrary to experience.

It remains to determine the refractions in the different at-
mospheres included in the formula. As we already know the
horizontal refraction in one extreme case, it will be sufficient
to seek its amount in the other extreme case. Now, if we put
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u =m %, then, supposing m infinitely great, we get

1= (12 )"=c""

=(1—f)ud2f(1—c"):

consequently, _
gis—2aws=2i(1—f). ut2i(2f—nr). (1—c™"):
and, if we make a=(1—-:f)k=z{:;; theneis—2aw=27a.u
doia. k(1 —c").
Hence, .
r=oa (14 a) Sin. 6 x duc_

‘/Cos.’e 4+ 2ia.u42ia.k(1 -c"’“f
Applying to this expression the method already employed
in No. 9, we shall get, in the case of the horizontal refraction,

S LIEDIZIN FEAN B AP p— AP AW AR

Va2i(1—f)

Now, f=4£; A =0.21909; k= 0.37455: with tnese num-
bers r comes out equal to 2059".7 when all the terms of the
series that are set down, are taken in except the last; and to
2057".4, when all the terms are taken in: the more correct
value of ris therefore 2058".5, which is just 17”.2 more than
in the other extreme case of m==4. Thus the refractions
undergo hardly any change in all the atmospheres compre-
hended in the formula ; -although their height increases from
about 25 miles to be infinitely great; and although the rate
of the decrease of heat, which has always the same initial
value, varies differently in each.

Reflecting on what has just been proved, it is extremely
probable that, for every value of m between the two extreme
cases, the densities and pressures will be found, at least to a
great height, very nearly the same as in the real atmosphere.
We can hardly account, on any other supposition, for the




452 Mr. IvorY on the astronomical refractions.

near coincidence of the refractions in so many different cases
with the observed quantities. In order to examine this point,
we may take the case of Gay Lussac’s ascent; the data ob-
tained by observation, as they are given by Ramonp,* being

as follows, viz.
Log. P=— 1.6361109
= 30°8
T = 9.5.

With these numbers, by means of the formula P= 1t g

1487

x (1—u0), we get,
' 1 — 0 == 0.5004,

which may be reckoned the density by observation; and we
must now compare it with the result of the theory.

Now when m =4, f=o0; and we have these equations,
viz.

P=(1-—--§—)‘

1— == ( 1 — -';—)‘;
consequently, '
. ‘ 4
1—o=Ps:
and, by substituting the foregoing value of P, we find,
1—w=0.5115, ‘

which is greater than the value deduced from observation by

about;‘; of the whole.

Again, we have generally,
1—o=(1—2)"

P=(1—f) (1—2)" V' 2 f (1—2)"":

wherefore,

P=(1—f) (1—a) = " af(1—a)";

# Memoires sur la Formule Barometrique, 1811. Examples at the end.
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and, when m is infinite, f== £,
=3 (1—a)F$(1—a)"
By solvmg this equation with the given value of P we get,
1= == 0.4951,
which is less than the true quantity by about —1-'5—0— of the whole.

It is remarkable that the two results lie on opposite sides
of the true quantity : from which it follows, that a value of
m greater than 4 may be found, that will accord exactly
with the observation of Gay Lussac. No confidence, how-
ever, could be placed in a calculation founded on a single
instance, where an enormous difference in the results would
be produced by a small error in the quantities determined by
experiment. But at any rate, what has just been remarked,
agrees very well with all the arguments that have been ad-
vanced to prove the finite extent of the atmosphere sur-
rounding the earth.

For farther illustration, some other observed heights have
been selected from the same work of Ramonp, the calcula-
tions being made in the same manner. The results are
contained in the following table.

Places. By Observation. : By Theory. Heights.,

Logarithms P, | = 7 |Density. Density. Fathoms,

m = A|m=o00

Puy de Dome, in —1.94529 18.6 101.7 0.9035{0.9041 [0.9035 | 583

Auvergne,
Mont Perdu, in

the Pyrenees, ”l‘8894’4' 20 7-5 0.8106 0,8157 0.8132 1185
Pyrenees. —1.86738 |25.4 10.40.776810.7833 |0.7798 | 1429
Etna - - —1.82811 {23, 4.4.10.7196]0.7286 |0.7232 | 1825

Chlmborazo, in
the Andes,

Gay Lussac’s
ascent,

—1.69582 [25.3| — 1.6/0.5468/0.57100.5580] 3215

{
{
Pic du Midi,High }
|
i

—1.63611 {30.8| — g.5|0.50040.5115 |0.4951 | 3816
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It appears, therefore, that in all the ‘atmospheres compre-
hended in the assumed formula, the density corresponding to
a given pressure and temperature coincides very nearly with
what is actually found by experiment. But although this
be admitted, it may still be questioned, whether the height at
which any proposed pressure takes place will agree equally
well with observation. Now, in: the real atmosphere, the
height belonging to any pressure is usually deduced from the
formula for barometrical measurements ; and it will be suf-
ficient to show, that the same formula is true in all the atmo-
spheres we are considering.

In the first place, when m = 4, we have

. s \s
P=(1—-;-)
148 8
148+ 5

From the first of these equations we get

Lo = 5log. = (10 4+

I—r—

5
neglecting the cube and the higher powers of s : and hence,

1 s \y 1
S = (1—"’5?) 1Og-P—
But, from the other equation, we get

148+
and hence,
/’
1+5_T";T : S
_Tm__.::l-—-g. .5_. .

Now substitute this value in the foregoing equation, and
likewise, for s, write the equivalent quantity l’(T-'E'eT'); and

we shall obtain,
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P .
r=1Ix {1+ﬂ- "': }-Log.—l'-,—,
which is no other than the usual formula for barometrical
measurements, r being the height corresponding to the re-

lative pressure P.
Again, when m is infinite, we have already found,

U
N A y

P= (1—f)c"“-{-fc"‘”:.—c—".{1—-f(1-—c"'“)},
s=(1—f)u +2f(1-—c'-")

I+B'f—_ P — wanin U
=1 (=)
Hence,

1

—Fa—e)
and, neglecting the cube and higher powers of 1 —¢—*
Log.%—:u +f(1— c"u) +€—z. (1-—0"“)3.

But, we easily get,

Log. -%,— =u - log.

b

+ 7

148,22 . o
T =1—3 (1 —c"");
wherefore, by multiplying,
18- f.i'ﬁ. |
: +B__— =u+f(1— Cgu) ----{- u (1--c_“).
Now, because

fu=fG—c") 4L (1= '+ &

we get, by substituting and neglecting the same powers of

Log. P"

(1—c¢™") as before,

'r+'r
148 n .
Long x+61 =u-f(1—c~ )-—-2-(1—-c )
Farther,

s=u-—fu+2f(1—-c'"u);
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but,

fu=f(—) + L=
consequently,

s=u+f(1—c" —-—Jz:(l—c"")z-
We have therefore

I+B'7+TI

§E= % 2
P 1487

we get as before

Z
and because s = TEEET

z=1xlog. & x {1-|— ﬂ-"':"'}.

The very exact coincidence in the properties of all the at-
mospheres comprehended in the assumed formula, with thz
phenomena actually observed at the surface of the earth, ac-
counts in a satisfactory manner for the near approach of the
refractions in eVery case to the quantities determined by as-
tronomers. It appears that, although the refractions near
the zenith are affected in a degree hardly perceptible by the
peculiar constitution of the atmosphere, yet, near the horizon,
they depend entirely on the same arrangement of the strata
of air indicated by terrestrial experiments. The causes of
the irregularities observable in these last, likewise disturb the
celestial phenomenon in a more remarkable manner. In
measuring the height of a column of air, the accidental dis-
turbances to which the atmosphere is continually subject, are
in some measure corrected by means of the temperatures
observed at both extremities of the column ; but, in com-
puting the refractions, the astronomer has no guide but the
thermometer placed at his Observatory. In the remote parts
of the atmosphere, there may occur innumerable changes de-
flecting the light of a star from its proper course, of which
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he has no intimation, and for which he can make no allowance.
In comparison of this great source of error we may reckon
as of smail account, the inaccuracies that are owing to the
neglect of the moisture diffused in the atmosphere, or to our
want of an exact knowledge of the law of density in regard
to temperature. ‘There can hardly be any other remedy
than that of which astronomers so often avail themselves,
whenever an ignorance of the real causes obliges them to
assimilate the phenomena to the effect of chance; namely, to
multiply observations in different circumstances, with the
view of making the inequalities of an opposite description
compensate one another.

From the foregoing discussion we may draw this conclu-
sion: that an atmosphere constituted like that of the earth,
must have an altitude of at least 25 miles, in order that the
refractions from the zenith to the horizon be such as they
are actually observed to be. But an atmosphere agreeing
with nature in the quantity of the refractions may be found,
that shall have any proposed altitude greater than the mini-
mum quantity.

We may infer from the duration of the twilight, that the
atmosphere of the earth must have an altitude equal to 50
miles, or even more; which corresponds to the supposition
of m equal to, or greater than 10. But all these cases are so
little different, as to the refractions, from the extreme case
when m is infinitely great, that we may suppose them to
coincide with it. The mcst probable supposition with respect
to the mean law of density, seems therefore to be contained
in these equations, viz.

-
1l=—w==¢

s=(—f)utef(1—c");

MDCCCXXIII. 3 N
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f being nearly equal to . In this hypothesis it has been
shown that the same pressures, densities, and temperatures,
would take place at the same altitudes as in the real atmos-
phere, as far at least as observation enables us to determine.
We may therefore presume, that it is not far from that mean
state which would prevail, if the regular disposition of the
strata of air were not continually deranged by disturbing
causes. It remains now to find the refractions in this hypo-
thesis, and to compare them with the quantities observed by
astronomers.

12. We have hitherto supposed that «,7, » = =, are quan-
tities varying with the pressure and temperature of the air ;
but it will now be necessary to restrict those symbols to the
particular values that take place at the mean temperature of
50° of FAHRENHEIT, and the mean pressure of 30 English

inches. We shall use the expressions « (1 .+%"-‘-), (14 -i_’),

A -} 32, to denote the like quantities as altered by the changes
in the atmosphere. 'What was before signified by
27§ —2aw,0r 27 (S—2Aw),

will now be thus written, viz.

oi(1 4+ 7). {s— ()},
and, by substituting the assumed value of s, and rejecting
quantities of the second order with regard to the variations,
the same expression will become,

z.{(1—ef)u+2f.c’"}
doi B fG—Putefe}

—27. . (1—=c"");
or, more simply,
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2z’y+2i.%’:y—aich(l-—c‘“),
by putting y = (1—f)u-2fc". We shall therefore have

this expression of the refraction, viz.
-

7‘=(1+é\5).a(1+o&)5in.9>i/ ak

\/COS.‘9+ 2ty + 21 %y—— 2ida (1 —'c)_u
and by expanding

r=(1+§3).a&(1+a)5in.9x duc””
“ V' Cos20 + 21y

Y . duc™ %y
—-Z.—z.-.oa(1+u)Sln.9x 5
{Cos.’é-j— 21y } 2

+ 2'37\. o (1 + 0&) Sin' efu.c_u(l—-c—u) )

3

{Cos.’fe+ 2iy } 2
Let p denote the observed height of the mercury in the
barometer reduced to the fixed temperature of 50° of FAHREN-
HEIT; 7 the temperature of the air on the same scale; and

B = 2%5 the expansion for one degree: then,
S, da o

1d+—= = 2

“( a) 1 4+ B(v=—750) xgo

P14 F) =1 (1 + 8 (r—50))

Ly e
Ak dA=> La— 2 pa
+ T X T TF2EG=50) X 3o
I +-—;,-
consequently,
) ___T=350
i T 480

— 2 A ,
oA = — yErs (r — 50)-“--3—0(30 ~p).
By substituting these values, we get,

3@) . du.c™™ Y
r=(1-4=).a(14a)Sin. 0 x [—22-
( ® ( ) X VCos* 0+ 21y
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(14 )Sm 6 ;s Y . —_—c Y
— (7=—50) x = 4:;0 { dee v 217\f"“ " (1= )
{Cos.’0+ziy}—2— {Cos‘9+2zy}

a3 __

_ (30 P) Aca(x +a) Sin. 9 duc_"(l—-c'ul .
{Cos.’0+ziy}—2_

Let us now assume

r=1(1 -l-é;) 36 4 (r—350) ——
¢ 6 being the mean refraction at the apparent zenith dlstance 0;
then, by equating the like parts of the equivalent expressions,
we get,

dJ‘O dN

duc™% u

80 =a(142)Sin §x Voot

dr

o (1 4a) Sin. 0 S/ To Z}\\/d (:_c—u)
— :
4%0 Cos +zzy Cos‘9+z;y}

dde Aa(l+w)x w.c” (1 ¢~
dp — 30 3,
Cos“9+zzy}

each of which expressions must be separately considered.

Now we have
y=u(f—2). (1= =flcTF=14u);
and if we substitute this value of y in the expression of &6,
and then expand the radical quantity, retaining only the
terms of the first order, we shall get,
A=V Cos*0 4 2iu

$0=a(1+ «) Sin. 0 {fdzf"
Y (1—c?)

—i(f=a) fR

: du.e (" =140 |,
+if. = }
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It will presently be shown that the other terms of the ex-
pansion may be neglected ; because f— A is very small; and
because the function multiplied by f becomes inconsiderable
after integration. Since we want only the definite integrals
between the limits % == 0 and #= e , by applying the me-
thod already used, we shall obtain,

30=u(1+u)5in.9x{fczzt_c"”
_(f___;\)fdu d.c” (,_.C w)

du d.c™ u(c Y 1 + u)
+ffA ‘ du }

or, which is the same thing,

$=a(14asnoxf flee

— (f__;\) ’ du(zc"z”-—c”'u)

A

+f | d”(ZC""—-zc"z““uc"“)

A
In order to estimate the error produced by the terms of
the expansion left out, we may compare the amount of the
foregoing formula at the horizon, with the exact value of
the horizontal refraction already computed. Now, when
Sin.§ =1, Cos.6 =0, A=+/27u; and the expression will
become,

_a(l+ @) fi__u_g"‘u___ ___ du'(zc"z“-—c"”)
=% "{ ve UL

+f du(zc™ —:/Czu—qac"”)
u J
And if we now make == #*, and then integrate between the
limits ¢ == 0, ¢ = & , we shall get

=20tV xv{l——(.f-?- 2). 03 —1) + f[& = va)}.

Vi
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Hence 36 ==2055".6.
But we before found the horizontal refraction equal to
2058".5 ; and the difference is therefore no more than 2”.9,
which is of no moment, since the refractions just at the horizon
are alone affected by the error.

In order to reduce the expression of &6 to the most simple
form for calculation, we have,

u . -
Ac~t—Cos. =1 ‘“j: — Cos.2 0 d“c zifld“:“ ;

the integrals commencing when # = o: and when they are
extended to « = o , we get

du.uc™¥__ 1 du.c“u___Cos."O duc“”__l_ Cos. b
A 3z A PX A 21

NOW pUt N . Cos'zy}u,' c'—-u—_— Cos. 0
Y A 2t

duc™2Y ﬁuc_u
M—%_/ZL\— a

then by substitution we shall finally get

duc™

=u(1+a)Sin.9x{ - u—l—}\.M

—f(aM—y fieet_ )}

The expression of iz_s_o_ may be put in this form, viz.

ade w(l+a)Sln9 . duc™Y
de T - 480 2 V' Cos?bf 21y
Cos.?b duc™¥ :
{Cos’0+zzy}~
) e (1-c™ u)
+ 21
{Cos’6+2zd1}
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and it will be sufficiently accurate to write % for y in the de-
nomlnators of the two last terms: then

dde __ 1 m(l-]-u)SlIle duc™ ”(l—c u)
== 7+ {“‘“f

COS"@ f(luc }

and, by the same procedure as before,

as 1 M, a(+a)Sin0 Cos.?0 fduc—%)
dr — . 480 "z + 480 2AM— —— 2 A J>.
But we have
1 c~ ¥ duc™ cluc %
Cos.0 — A& — a + ’

the integrals commencing when # = o ; and, when % == ¢,
we get,
Cos.* 8 duc~% _  Cos.? duc™™ | Cos.

> f‘r ===/ & +T5=—N
Wherefore,

ddb 1 a(1+a)81n9 .

dr —_480°7+ 480 ' {QAM-'.N}
and, by substituting the value of 84,

a3 a(+o)sing_ [, fducTv, o
ar —*"’7%—‘*{5 = tiAM+N

_J_(QM — L __N>}

Lastly by writing « for y in the expression of , we readily

obtain '
ﬂ___ LG a (14 +u) A Sin. 0 « M.
Th d 26 dM
us the quantities 86, ——, T ultimately involve only
two different integral ; duc™® o q fduc™?",
grals, VIZ. ~ an : the va-

lues of which we must next endeavour to investigate.
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duc™®
VCos* 0 ztu
\
u==0tou=00,is composed of these two parts, viz.

. f duc™ +c —mf - .
V/Cos.20 4 ztu \/Cos’9+zzm+zzu’
the first part being contained between the limits # == o, and

u=m ; and the second part, which arises from substituting
m -+ u for u in the first part, being extended from u = o to
U=,

To begin with the first part put

u=m(1—e)x 4+ mez";

and the limits of  being o and m, the limits of z will be o
and 1. In order to determine e, assume
A=V Cos>§42:m(1 —-e’)z+2ime2z‘=Cos.0+ezt/m
then

13. The whole integral

, extending from

Viim. 2¢
Cos. 6 — 1—e*’
du 2¢
— == xmdz
a VZim ’
fduc v__  ze mdz.c ~mz + e*m (z—27)
A \/zzm e

; ) —u
Let the integral sought, viz. ‘LZ_C_ between the limitsu =,
u = m, be expressed in a series of this form, viz.
duc_u_._ 2 (o) 1

Q/]T_ == x{A ek AW AWt g
then if we develope the foregoing exponential value in a series

of the powers of e, and equate the like terms of the equiva
lent expressions, we shall get,

n n -
A() _omttr I fdz(z-—-z)" -mz

the integral bemg taken between the limits 2 =0, z =1."

1
J
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But the integral between the limits mentioned, is equal to the
difference of the two values of the same integral taken, the
one between the limits 2 =0, £ == 0, and the other between
the limits z =1, 2 = . Now by writing 1 + = for 2, the

expression
fdz(z—-z Y™

will be changed into

(—1)" fdz(z+z)" R
and it is obvious that the value of the former between the
limits =1, 2= ¢, is equal to the value of the latter be-
tween the limits z =0, z==o. It follows therefore from
what has been said, that we shall have

AY = l-’-"z__s_.. {fdz(z-—-z) R Gy ”'fdz (z-]-z’) ¢ },
each of the integrals being extended from z =0 to 2 = .

Again, p being any whole number, we have, between the
limits 2 == 0, == oo,

T.2.3 .p
2.2l o s,

Wherefore if we expand the binomial quantlties}in the value

of A™, and integrate the terms separately, we shall obtain
A(n):‘:l—-—n ."+ ! +n ."‘2"' ,”+1'”+2__n  n—1 n—2 .h+l.n;32.n+3 + .

m* 2 3

— (= [ B et S k).
By this means we get the first part of the mtegral sought in
a series that has all its terms positive, and that will always
converge because ¢ never exceeds unit.

Let us next consider the second, or supplemental part, viz.

—m duc™% .
¢ ><‘/‘\\/Cos.“()-{-zim+ziu

MDCCCXXIII. 30
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Now Cos.?§ = & 4: i x 27m: and, if we substitute this va-

lue, the integral w111 become

2:tm |+e" / 1u'
1+ ,+e -

and, by expanding the denominator and 1ntegrat1ng between
the limits = 0, u = o, we shall get this value of the quantity

sought, viz.

' 2 c'mx' ze . ze \3
7':‘:-"‘— z 14 e m  2°\1+ €

+ &c. }

This series will converge in its first terms : and the results
being alternately too great and too small, we can thus esti-
mate the degree of approximation.

By uniting the two parts, we get this expression for the
whole integral between the limits % = 0, ¥ = oo, m being an
arbitrary quantity, viz.

Sl =i {AY% 4 ADa o AP 4 o]
2 —m 2e
tvims e ()

1.3 5
+ mr (1__‘_61)
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The supplemental part is less than

2 ec™™

Viim 1+ e’
it is therefore very small when m is a considerable number,
in which case the value of the integral will be found with
sufficient exactness by means of the first series alone. But,
with regard to the foregoing expression, we must not omit to
remark what is a very curious instance of the artifices that
must sometimes be resorted to in order to bring an analytical
expression within the boundary of arithmetical computation.
If the supplemental part be developed in a series of the powers
of e, it will consist of precisely the same terms, but with op-
posite signs, as that part of the first series which is multiplied

by ¢”™. In reality, therefore, the exact value of the integral
is what remains of the first series, when the part multiplied

by ¢~™ is thrown out ; which is also very manifest from the
mode of investigation. But the series so obtained is imper-
fectly computable. It belongs to that class called semi-con-
vergent ; which converge indeed to a certain degree in their
first” terms, but afterwards become divergent. By adding
and subtracting the same quantity in two different shapes, an
expression is produced consisting of two parts, that can be
calculated separately to any degree of exactness.

For the sake of brevity, let the supplemental part be re-

presented by \/-;m.c'"‘-R: then, if we separate from the

first series the part of A“) multiplied by ¢™", we shall have
S =k e A L AG e e ]

+\/;Tz'7izx (R—e):




468 M. Ivory on the astronomical refractions.

And it follows, from what has been said, that the subsidiary
part of this expression is no other than the expansion of R
deprived of its first term. In like manner if we separate the
parts of A(°), A, A® which involve ¢™™, we shall get

-

S = e (= et (1—E 4 2 e AP 4 e ]

sz

+E— {R—et (142) e’—(1+£,—+-},,—é)e‘};

And here the subsidiary part is the expansion of R wanting

the three first terms. On account of the factor ¢~ ", the sub-
sidiary parts decrease without limit as m increases; and
thus the value of the integral can always be found to any
required degree of exactness, in a series coinciding with the
rigorous expression in its first terms, at the same time that it
converges in its remaining terms.

Now let m=8 . then

-8
A(3) + 235 = 0.204857
A(4)*£_~2141 -8

6 256 ¢ = 0.079225
(5)____ 19 4 23029 8 __

A 1024 + 1024 0.026099
6 8

A( ) 127 287575° ___000074‘53

== 4096 4096 c

A(7) = — 1163;874. + 4112233_9 c ¥ 0.001876
A(S) 22237 66205285 -8

— 65536 65536
And hence, neglecting the parts of A@ AM A® that in-

== 0.000422

-m
volve ¢, we get
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B K fe+ e3+ Ze® 4-o. 204857.¢’
N 2\/7 X
-} o0.079225.¢°

- 0.026099.¢"
+ 0.007453.¢*
4 0.001876.¢"
-+ 0.000422.¢"
Although we are sure that this value is a near approximation
to the truth, yet it may not be superfluous to examine whe-
ther it be sufficiently exact for the purpose intended. Now,
the part of 8¢ depending on this integral, is
a (14 ) Sin. 4. duc“
and, this being valued by means of the foregoing . series in
the case of Sin. =1, and e=1, in which circumstances the
error of the approximation is greatest, the result will be
a(l+a)
2T
But, when Sin. =1, A=/2:u; and the quantity we are
considering will become |

“(1+w) duc
vV

and if we put u == ¢*, and mtegrate between the limits ==o,
t = o, the exact value will be equal to
a(14a) /7w
Vi
It appears, therefore, that the error of the approximation
when it is greatest, or when e==1, does not amount to half a
second. But as the error is expressed by a series of terms
multiplied by e’, e®, &c. it diminishes very rapidly as e de-
creases, and becomes altogether insensible when 6 is less
than go°.

%X 2.506932 == 2038".2

=2037".8.
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2%
Itremains to find the value of the integral dzc between

the limits ¥ =0, u==co. By substitution we get

—2u —2mz 4 zme*(z2—2%)
zﬁ“ = zf_..):/;mdz.c
A Vizim

from which it is manifest that we shall obtain the value
sought by substituting em in place of m in the coefficients of
the former series ; thus

%/;Zc—wz \/:im {e+(1_ )83+ (1""27{'*‘4,")
+A/(3)e1+Al(4-) °+&C }

A’(3) A’®, &c. denoting what A®, AW, &c. become when
2m is substltuted for m. Hence, making m=8, 2m = 16,

we get

A’ (3) — :?2 -+ 15013; ~-16 ==0.455078.

A =%§%_% % =0.273681

A5 =34287ng + '38237365830 ==0.147188

O S S oo

N

A= 12;33236 9:;7575792‘1963 i l6=o'012564’
Wherefore, i

o [l o {eb et B e roansorse

+ 0.273681.€°
- 0.147188.¢"
+ 0.071299.¢"
--0.031326.¢"
4 0.012564.¢"
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Having now found the values of the two integrals on
which the expression of the refraction depends, we get im-

mediately
M——- - e‘ . — ! e— . 8 .e3
zvzx{ A M 2\/ix{002736
4 0.234875.¢° -+ 0.051349.¢°
-4 o0.250721.¢’ -+ 0.054930.¢".
- 0.1944.56.€° - 0.042602.€°
+o0.121089.¢™ -} 0.026529.¢"
-} 0.063846.¢" + 0.013987.¢"
-+ 0.029450.e" + 0.006451.e"
4-0.012142.¢" - 0.002659.¢"

And again, we have

N = Cos.? i/il._u_c—u__Cos. b,
EEX A YR

but
Cos28 m (1=—e?)?* (1—e*»)*, Cos. 1 [—e?,
—— T e T e Q, ———
21 4 ez e 2 24/; €

- U
 §
and hence, if we pu.’E/} 1 ° = v % ¥; so that § stands for

the series in the value of the integral ; we shall get

(1 —e?)? Ie—e?
N—.—Z\/—— 2 7- ..4/ e }.

Wherefore by substituting the value of ¥, viz.

Y=eF itk e’+A(3) e +A(4) * 4 &e.
we shall find

N=—— x{—te—fei o (3—3+AW)¢
+2(d—2ABP LAWY o2
+2(A(3)—2A<4)+A(5)).e’
+2(A(4)--—2A(5)-|-A(6)),e“
+2(A(5)——2A(6,+A(7)) '3
+2(A(6)-—2A(7) * )"

\+2(A(7) * * )‘eu
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And, in numbers,

N= h \;T X {-«—— te—le® d0.158714.6°
-} o0.216022.¢"
-} 0.144012.¢°
-} 0.068960.¢"
= 0.026138.¢™
-} 0.007402.¢"
-4 0.003752.¢"
To find &, it only remains to substitute the numerical

- ’ :
d . I .
values of J ===, 2 M, and N, in the expression investigated

in No. 12; then,

30="2U%2 . Sin.fxex{140.777386.¢"

+- (6.488849— 0.091286.f).e*

+ (0.259287—0.183242,f).€°

<+ (0.121827—0.205287.f).¢"

+ (0.052628—0.160168,f).e™

+ (0.021440—0.097828.f).e"™

+ (©0.008327—0.050560.f ).e™*

4+ (0.003081—0.020321.f).*

The two first terms of this expression do not contain f;
and they give that part of the refractions near the zenith,
which has no dependence upon the constitution of the atmo-
sphere. As there is some uncertainty in the value of f, it
may be determined either so as to make the horizontal re-
fraction coincide with the quantity adopted by astronomers ;
or so as to make the formula represent some very exact ob-
servations made at low altitudes, from 2° to 7° above the
horizon. With regard to altitudes less than 2°, it is not clear
that the astronomical refractions do not participate of the
extreme irregularity that attends the terrestrial refractions,
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which would render such observations unfit to be employed in
this research. But in the present state of our knowledge it may
be doubted, whether a more satisfactory determination of f
can be obtained than what we have hitherto assumed, namely,
f=4%. With this value, we get

3(9_..”‘i;_'*_"°°)xSin.9><e><{1+o.777386.e_2

+ 0.466028 . ¢
~+0.213477.¢
-} 0. 070505 . e
4 0.012586.¢"
— 0.008017 .¢
— 0.004813 .¢
-~ 0.001999 . ¢

Log. "%—;—“—) =2 .9101040.
2

Tan. ¢ =19 . 1580271 =4 Sec. § — 20 ; ¢ = Tan. £ ¢.
If we make 6 = 90°, and ¢ =1, we get, ‘

39 oa(l-{—ac)

2 Z
This is the horizontal refraction by the formula: and as the
exact value of the same quantity was before found equal to
2058". 5, the error arising from the method of approximation
amounts only to 1” at the horizon. But all the quantities
neglected being of the orders ¢, ¢°, &c. the error will be al-

together insensible unless when e is extremely near 1, that
is, at very low altitudes.

The foregoing expression may be put in another form,
which, in some cases, is more convenient for calculation.

2e ___4.\/7. we et — 1 e
1—e* — Cos.b’ ) \/_—-— Cos. b *

MDCCCXXIII. 3P

X 2 . 530653 = 2057". 5.

Since -
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and hence, by substitution,
d0=a (14 2)Tan. f x {1-——0.222614.4»”
) ~0.3113858 .¢e*
—0.252551 .¢°
-—O0.142972 .¢°
—0.057919 . ¢*
~— 0.015608 .¢
Log.2 (14 «)=1.7671011.
This transformation can be of use only to a certain distance
from the zenith ; for at the horizon Tan. § is infinite, and
the factor 1 — e® is equal to zero. The expression set down
is sufficient for finding the refractions exact to +i5 of a se-
cond as far as 85° from the zenith.
And, if we take the logarithms of both sides of the last
expression, we shall get
Log.d6 =Log. Tan. § 4 1 . 76710
- O . 096680 . ¢*
—0. 145982 . ¢*
—0. 141413 . e°
—0.114530.¢€°
- 0. 089474 .e"
— 0, 078278 .e™
which formula is very convenient near the zenith, and is suf-
ficient for finding the logarithms of the refractions exact to
five figures, as far as 84° from the zenith. It is to be ob-
served, that while § increases from zero, e increases from a

limit, from which it varies very little till § becomes a con-
siderable arc.
39

In order to have —— and i?—?- it is only requisite to substi-
g P
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tute the numerical values already found in the expressions
investigated in No. 12 : thus,

dd0 __  a(14e) 1 s 2
=10t xr%—xSm.Oxex{o.sl&w.e

+ 0.4944¢2 . ¢"
-+ 0.43262.¢
4 o. 264477 . €
4 o0.12831.¢€°
4 0. o05260.¢"
-4 0.01815.¢
4+ o.o00807.¢
Log. = (;;f_) X —g5 = 0. 2288628.
d36 —_ a (1 +u)
dp — z\/z

xSm Gxex{o 125 . ¢

+ o0.23437.¢
4+ 0.25072.¢
4 0.19446.¢
- o0.12109.¢€"°
- 0.06385.¢"
4 0.02945 . "
4+ o0.01214 . ¢

(1 4+ o) N

By means of the foregoing formule the table annexed to
this paper was computed. In the first column are placed the
distances from the zenith : the second contains the values of
80, or the mean refractions at the temperature of 50° of
FAHRENHEIT and the barometric pressure go English inches :
the third contains the logarithms of the refractions: and,

when the zenith distance is greater than 75°, the values of

d3h a3 )
— and T are added in two other columns.

Log.
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The use of this table will be clear, from the subjoined for-
mula for computing by it the true refraction, supposing that
7 is the temperature by FAHRENHEIT's thermometer, and p

the height of the barometer in English inches.

G (r—50) — - (30—p) .

The first term is the mean refractlon corrected for the ob-
served temperature and pressure in the same manner usually
practised by astronomers. When the zenith distance does
not exceed 75°, the two remaining terms are to be accounted
as evanescent ; and, even when the zenith distance is 80° or

r—l+B(¢——-go) 20 X 9+

a little more, the same terms may, on most occasions, be
omitted : otherwise the two terms, amounting generally to
some seconds, are to be added to the first term with their
proper signs.

Three subsidiary Tables are added for facilitating the cor-
rections for the barometer and thermometer. Table II. con-

tains the logarithms of !

1
+B('r—50) I+'r—--g
either s1de of the mean temperature 50°; negative indices
being avoided by substituting the arithmetical complements.

Table III. contains the logarithms, or the arithmetical com-

, for 40° on

plements, of for the values of p between g1 and 27L.
Table IV. contams the small corrections, positive or negative,
to be applied to the numbers in Table III. in order to reduce
the observed length of the barometric column to the mean
temperature of 5o° The numbers of this Table are the
logarithms of

1 T—50 > equal to —
+ 10000

14. Instead of applying the new Tables to particular in-

x ‘434

10000
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stances, it will be more compendious to compare it with
other tables that have been long in the hands of astronomers,
and the characters of which are well established. The table
has been constructed with the same elementary quantities as
the French table, at least as far as regards the refractive
power and the weight of the air, which quantities alone in-
fluence the magnitude of the refractions near the zenith.
But, in comparing the two tables, an allowance must be
made for the difference of the standard barometers; and this
requires that the refractions in the new table be all diminished

by 30800 — -3—-;-5 . Now, taking the refractions at 45° and 8¢°
from the zenith, we get
58".86 (1 —--3—;-;) = 58".2,
320.19 (1 — 3—;—5) =319".3;

and, in the French table, we find the first of these numbers
exactly, and 819”.8 in place of the second. But we must not
forget that there is a small subtractive correction to be ap-
plied to the mean refractions of the French astronomers,
which is usually neglected, although it will be found among
the tables of refraction (Table V.) inserted in the Tables
Astronomzques, published by them in 1806. This correction
amounts to 0”.5 at 80° from the zenith; and the former
number is thus reduced to g19”.3, the same as in the new
table. 'We may therefore conclude, that when we calcu-
late rigorously, the mean refractions of the new table are
- the same as those of the French astronomers, as far as 81°
or 82° from the zenith. I

But at lower altitudes there will no longer be the same
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perfect agreement between the two tables : first, on account
of the difference in the hypotheses respecting the constitu-
tion of the atmosphere; secondly, because the tables are
differently constructed.

The French refractions at low altitudes are computed by
a formula which the sagacity of LaprLace deduced from a
hypothesis respecting density, that must be a near L:il,pplroach
to the law that actually obtains in nature. The formula is so
constructed as to give the horizontal refraction adopted by
astronomers ; but we may still judge, in some measure, of
the accuracy of the hypothesis, by comparing the rate of the
decrease of heat at the earth’s surface with the result of
actual observation. Now, in the hypothesis of LarLack, I
have found

Z—:’ (making s =o0)=0.7159 ;
which is a near approach to 0.8, the quantity assumed in
this Paper. But the difference, although it seem very little,

has nevertheless a great influence on the constitution of the
atmosphere, as will be obvious if, by means of the equation

g—sz(.s‘:: ()) == 1 ——-—--B‘E-—l)

we compute the value of p resulting from the preceding value

of —'2—5;- . It will be found that w =59 %; which is the eleva-
tion in fathoms that in this hypothesis will depress the cen-
tigrade thermometer one degree ; and it is no more than about
2 of the true quantity. It follows, therefore, that the theory
of LarLAack does not strictly accord with the actual condition
of the atmosphere, which must affect the accuracy of the re-

fractions near the horizon.
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'The French tables are also liable to some inaccuracy at
low altitudes, from the manner in which they are constructed.
The calculations are originally made for the temperature
zero of the centigrade scale, and the barometric pressure
29.92 English inches; and from the numbers so computed,
the refractions are in every case deduced, on the supposition
that they vary in the same proportion as the density of the
air. But, besides this alteration of their quantity, the refrac-
tions undergo other variations, as the elementary quantities
of the formula change with the state of the air; namely,
those contained in the second and third terms of the fore-
going rule for calculating by the new table. Now, the varia-
tions here alluded to are neglected in the French table, al-
though they are of considerable amount near the horizon.
They are neglected, however, not because the eminent
mathematicians who constructed the table were not aware of
their existence, but because they deemed them of little mo-
ment in a case of so great uncertainty as the refractions at
low altitudes. Properly speaking, the table in the Connazs-
sance des Tems is not one of mean refractions; that is, the
numbers in it are not the same that would be found by sub-
stituting, in the fundamental formula, the elementary quan-
tities reduced to the proposed standards of temperature
and pressure. The true mean refractions computed in this
manner would all be less than the quantities actually con-
tained in the table. In practice, therefore, there is a kind of
compensation that takes place between the excess of the
numbers in the table above the exact values of the mean re-
fractions, and the manner of correcting for the barometer and
thermometer ; a compensation which is very happy in many
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instances, but which cannot fail to leave a final error in a
numerous set of observations.

We are in possession of another table of refractions, com-
puted with great care, published in 1818, by M. BEsskL, in
his Astronomie Fundamenta. This table must be considered
as having the authority of actual observation as far as 86°
from the zenith ; since, to that extent, itrepresents with great
exactness the observations of Dr. BrapLey, which served as
the basis of its construction. At lower altitudes, the refrac-
tions in it are confessedly too great. To compare the new
table with that of M. BesseL is, therefore, the same as to
make a direct appeal to experience.

The astronomical refractions were first discussed with a
due attention to all the circumstances of the problem in the
Treatise published by Kramp.* This author gives the name
of specific elasticity to the quotient of the relative pressure
divided by the relative density of theair ; itis therefore equal
14 B7
14 B+
it by ¢ *°, e being a small fraction ; which function, therefore,
contains the law for the gradation of heat according to

. . -8$ 1487 3
Kramp. Now, if we substitute ¢~ ° for s D the foregoing

formula, and then equate the two values of P, we shall get

(1_w)xc"”.—=f—-ds(1——w);

to in the formulee of the present paper. He represents

and hence

1 €S
——( —1)es
1—w==C.
This is the rigorous expression of the density in the hypo-

* Analyse des Refractions Astronomiques et Terrestres, 1798.
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thesis of Kramp ; but, as it is too complicated for calculation,

he deduces from it this more simple value, viz.

1___w=c——(l—s)s

by retaining only the part of the expansion of the function
in the index that contains the first power of s.

In all this Kramp is followed by Besser, whose aim is to
determine the value of ¢ that will best represent all the ob-
servations of Dr. BRapLEY, without paying any regard to the
terrestrial phenomena, or to any farther theoretical consi-
deration s whatever.

Now, there is an essential distinction between the rigorous
expression of the density, and the approximate value used
instead of it. 'The latter belongs to a finite atmosphere, and
the former to one of unlimited extent. 'To prove this, we

need only substitute ¢~ =9 for 1 — & in the equation,
P=/—ds(1—u0);

and then we shall get
P ¢ ~(1—-¢2)s

J I — s

the constant quantity being necessary, because P== 1 when

B ——)

s==o0. ButasP cannot be negative, we have P == o at the
top of the atmosphere ; and the total height will therefore be
determined by the equation

~(1=—3g)s
¢c” VT

If we could suppose that ¢ is a very small fraction, and the
height of the atmosphere very great, what has just been

observed would be of little consequence. But, at the surface

-1}

of the earth, we ought to have% =1 —e =4

which would limit the atmosphere to about double the height
MDCCCXXIII. 3Q

and e==1L;
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in the hypothesis of Cassini. BessEL determines e =%

nearly ; which is quite inconsistent with the value of ':lr'”;

at the surface of the earth, and with the elevation necessary
for depressing the thermometer one degree, as found by ex-
periment.  Accordingly, although the refractions in his
table represent Dr. BRADLEY’s observations with great exact-
ness as far as 86° from the zenith; yet, at lower altitudes,
they diverge greatly from the truth ; and the horizontal re-
fraction comes out very nearly the same as in an atmosphere
of uniform temperature. In this last hypothesis the refrac-
tions agree with nature as far as between 70° and 80° from
the zenith ; and, by means of the arbitrary quantity e, they
are bent to a conformity with observation a few degrees
farther. : |

The preceding remarks have been made with the view of
showing how it happens that the refractions in M. BesseL’s
table agree with observation to a certain extent, and after-
wards differ so widely from the true quantities. In comparing
the two tables, we must attend to the points in which they
are different from one another. In the table of M. BEssEL
the constant of refraction is a little less than in the new table :
the mean temperature is 483° of FAHRENHEIT in the former,
and 5o° in the latter ; and the standard barometers are 29.6 -
inches and go inches. Now, supposing the two tables to re-
present the true mean refractions equally well, the differences
we have mentioned will hardly have any other effect than to
introduce a constant factor, by means of which the one
table would be reduced to the other. The logarithms of the
numbers in the two tables ought, therefore, to have constantly
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the same diﬁ'erence; and how far this is actually the case,
will appear by the inspection of the following table.

. Log. .
Dflfg:::cc g v - Difference.
zenith. N, Table. BessEL.
o
45 1.76612 1.75961 0.00651
55 1.92039 1.91385 0.0065 4
65 2.09568 2.08910 0.00658
75 2.33184 2.32510 0.00674
80 2.50541 2.49849 0.00692
81 2.54874 2.54175 0.00699
82/ 2.59624 2.58923 0.00701
83 2.6487% 2.64174 0.00701
84 2.70740 2.70042 0.00698
85 2.77367 2.76683 0.0c684
86 2.84951 2.84321 0.00630
8y 2.93754 2.93246 0.00508
88 3.04122 3.03903 0.00219

As far therefore as 86° from the zenith, it appears that, in
a practical point of view at least, the law of the refractions is
the same in both tables; and the real difference between
them is no more than a small variation in the constant of re-
fraction. But, from 86° or 87° to the horizon, the two tables
diverge so much from one another, that no comparison can
be instituted between them.

The first instance of a rule for correcting the mean refrac-
tions different from the common one, which supposes that
the variations are proportional to the changes in the density
of the air, occurs in a formula of the eminent astronomer,
T. MaYER, of Gottingen. The rule is given in the author’s
Iunar tables withcut the demonstration ; and it has been very
generally misunderstood and decried ;* so very uncertain is

¥ See the Article Refraction in the Tables 4stronomiques.
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even an improvement in the abstruser parts of science.
Doubts are entertained whether the rulewas found by theory,
or constructed in conformity to actual observation. The
latter supposition cannot but seem very improbable when we
attend to the formula; which is, besides, deduced very readily
from the method of investigation pursued in this paper. M.
BesskL is the first astronomer who has accurately computed
all the variations of the refractions produced by the changes
of temperature and pressure; and we shall next compare
the new table in this respect with the result of his theory.
Now, in his table, at the zenith distances 83°, 85°, 88°, the
total corrections for the temperature = are respectively,
—0".9821(r — 50), —1".3678 (r—50), 2".9944 (r—50):
but each of these quantities involves the usual correction
proportional to the change of the air’s density, equal to

*]%% x (7 — 50); and, when this part is separated, they

will stand as under ;

at 83, —0.9131 (T-——50)-——C’;.0690(7‘———-50),

85, — 1.2178 (7—=50)—0.1500 (7—50),

88, — 2.2792 (7 — 50)—0.7150 (7—250),
the latter parts being equal to -%8;9- % (7—50) in the notation
of this paper. In the new Table the values of % x (7—50)

are respectively, — o . 074 (7 — 50), — 0.159 (v — 50),
— 0. 722 (7—50) ; differing  insensibly from the calcula-
tions of M. BESSEL.

To complete this examination of the new Table, we shall
add some particular instances. We begin with the two
examples at p. 159 of the Connaissance des Tems.
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Examrie L ExamrpiE I,
0 = 86° 14’ 42" 0 =86° 15 20"
Therm. 8°.75 Cent = 47°% Faur. Therm. 8% =46°.9 Faur.
Barom. o™ 741 = 29.17 In. Barom. 0™.766 = 30.16 In.
86° 10’ 2.86323 86°10' 2.86325
4 42" 662 5 20" 752
2.86987 2.87077
Therm. o.00204 Therm. - - 0.00281
Barom. o. 98781} 9.98790 Barom. o.o-c;-zz,: 0.00245
Log.» - - 285981 Log.r - - 2.87603
r=724.1 = 12' §".1 r=7517 =12 31".7
—o0.28 x —2% 4+ 0.6 —~o028x—3 = +o8
4+ 0.8 x—o0.45 —04. —o0.16 x —o0.45= +o0.1
12 4.3 12 32.6
By observation 12 4.2 By observation 1z 32.§
Error 4 o.1 Error 4 o.1
Error of French T. 2.2 Error of French T. 2.9

The next instance is more to the purpose, being the mean
of 42 sub-polar observations of « Lyra by Dr. BRINKLEY.*
0 = 87° 42 10"

Therm. 385°
Barom. 29.5
87° 40 3.00466
2 10" 390
.3.00856
Therm. - - 0.01879
Barom. 9‘9_?_2;:} 9.993834
Llog.7 - - o0.01569
r= 1086.8=17 16".8
~ 0.6 X—15 +9 .0
—1 % 0.5 -— 0 .5
17 25.8
By observation - - - 17 26.5
Error - - - 1.2
Error of French Tables 5.5

* See his Paper on the Refractions, Irish Transact. 18135.
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The error is here very small, as it ought to be in a mean of
somany good observations. Half a degree subtracted from
the thermometer would bring out an exact result ; and some
small difference may be fairly ascribed to the uncertainty
arising from the different temperatures of the interior and
exterior thermometers.

But it will be satisfactory to exhibit the errors of every
particular observation. In the Irish Transactions for 1813,
Dr. BrINKLEY has given 44, sub-polar observations of « Lyree
with the observed refractions; and these are contained in
the following Table, extracted from the Connaissance des Tems
for 1819, p. 418, the column of the errors of the new Table
being added.
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Thermometer. Correc- | Correcti
Date. Barometer. zeni(t)tl:sgirs‘:ggce R(g):fbfa%rt‘!eg tions for "gc o
: m | ou . 1015 | F.Table. | N.Table.
1809, Jan.z2z | 29.25 25 8y 4’2 1.6 1'7 5'}.4. + 23.7 | 4 120
Feb.18 | 3o0.01 433 40.7 248 | 4+ 3.4 | 4+ 3.8
zo | 2978 | 431 40.6 24.2 | 107 | + 111
March 5 30.09 421 33.0 347 | + 87! 4+ 8.6
12 | 30.05 | 44 22.1 46.2 | 4 26.0 | 4 26,5
1810, Feb. 13| 29.94 34 30 57:0 3.1 | == 3.5 | — 8.1
19 | 30.02 32 29. . .6 10, .
March 17 | 2962 | 36 3?5 35,?, §§-4 i 3.1 i g?
1811, Jan. 18 | 29.90 333 | 32 12.2 38.1 | »— 0.2 | = 6.2
23 | 3027 | 35 | 32% 41 55.1 566 | + 9.1 | + 46
28 | 29.35 274 | 21} 58.5 54.6 | + 22. 13.
Feb. 3| 2944 | 311 | 30 42 343 204 | — 7; i.ig
7 29.24 39 38 52.5 3.2 | — 2.8 | — 4.2
8| 29.28 39 35 51.2 4.7 | = 2.3 | =— 4.0
12 | 29.03 3S 34 58.4 | 16 58.4 | — 26 | — 5.8
13| 28.91 | 35 | 33 43 33 537 | ==10.2 | == 14.0
Dec. 28 | 29.39 | 30% | 251 42 3.0 | 17 387 | 4 12.2 | 4 1.6
1812, Jan.z | 29.07 313 | 30 22.0 212 | + 6.9 | 4 o3
3 2895 | 294 26} 34.0 95 | — 58| —137
4] 29.11 273 | 23) 41 56.2 47.6 | + 246 | + 15.4
71 29.93 32 31 42 2.1 42,6 | + 0.6 | — 6.6
21 | 29.64 34 281 1.2 47.9 | 4+ 207 | + 15.3
30 | 29.18 39 35 36.4 19.2 | 4+ 17.2 |  25.2
Feb. 7| 294z 38 33 27.2 264 | +13.9 | 4+ 11.6
Dec. 2z | 29.66 33 26} 41 48.0 50.7 | 4 211 | 4 15.4
1813, Jan. 1| 2964 | 36 31 42 9.1 '
. 327 | + o .
3| 29.90 424 | 40 23.0 19.5 | - (9); i gg
11 | 29.52 36 314 11.8 33.2 | 4 14.2 | 4 10,0
19 30.02 36 32 41 58.2 49.2 | 120 | 4 8.2
26 | 30.1 33 28 46,2 | 18 3.2 | 4161 | + g9
Feb., 6 | 29.40 39 38 42 46.8 7 56| — 5.1
15 | 2850 40 38 43 24.8 6 23.6 —_ 1<5>.o - IZ:
;2 zg;i 39 3@ 0.0 55.0 | =12.0 | — 13.6
9- 4z | 36} 42 52.3 | 17 3.3 | + 4.0 | 4 41
Dec. 26 30.1‘—9— 354 | 314 41 55.8 .4_:;»6_~ 4+ o1 | — 1,7
27 | 3o0.01 361 | 34 42 21.2 18,5 | —17.3 | — 21.6
1| 29.88 3551 33L 1.0 o. “
1814, Jan. 1| 29.69 35,; 32(7; 2L.2 Lz}o.cx) i 2733. i;g;
4 29.21;; 261 | 23 41 59.6 42.7 | F17.4 | F 6:9
22 | 29. 21 17 25.7 | 18 222 | +18.3 | + 4o
26 | 28.9% 33 321 2 56.2 6 8| —
27 | 28.78 32% 301 3 .8 ' 52i - 105 :“'6
£ 2 49 594 4.2 9:9
Feb 29 | 28.63 315 | 29 515 584 | — 2.1 | = 84
eb. 13 | 29.67 41% | 39 47.1 | 17 6.3 | — 8.4 | ~ 8.9
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The errors of the French Table are - 340.8 — 119.1 ;
amounting to 459.9 when the signs are neglected ; and giving

8 — 119,
a mean error equal to -3-5'9——-@11-9-«3-, or 5",

In the new Table we have -4 218.6 —196.3 ; the total

218.6 —196.3

sum being 414.9, and the mean error — , or half a

second.

In both views the advantage is in favour of the new Table.

The inspection of the foregoing Table will show how fruit-
less it would be to expect a near agreement in every single
instance between observation and any table of refractions
whatever. Thus, the zenith-distance is less, and the baro-
meter and thermometer are both nearer the standard mean
quantities on the 12th of March, than on the sth of the same
month, 1809 ; on all these accounts, the refraction should be
less on the former day than on the latter ; whereas, according
to observation, it is greater by 11”.5. There is, therefore, no
sure test of the accuracy of a Table of Refractions except the
smallness of the mean error in a series of observations made
at different times.

I shall now subjoin and compare with the new Table, ob-
servations of a number of stars at low altitudes, for which I
am indebted to the liberality of STeEPHEN GROOMBRIDGE, Esq.
F.R.S. The reductions necessary for finding the true re-
fractions were made by that astronomer ; and the practice of
estimating the temperature of the air by the exterior ther-
mometer, which he recommends as answering best with his
method of observing, is followed in calculating from the
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Tables. I have not thought it necessary to insert all the
observations communicated by Mr. GRooMBRIDGE ; but such
only, where the altitudes are less than five degrees.

The correction for temperature is variously computed by
astronomers. Some use the interior, and others the exterior
thermometer ; and some prefer taking a mean between the
two. But it may be affirmed with some degree of certainty,
that the practice of computing by the exterior thermometer
can be perfectly correct only when the temperature is the
same within and without the Observatory. If we suppose

that this is the case at first. and that afterwards the air within
the Observatory is heated above, or cooled below, the ex-

ternal temperature ; the consequence must certainly be, that
the apparent place of a star will undergo some alteration. On
the other hand, if the heat be equally distributed within the
Observatory, and remain constant, while the temperature on
the outside varies ; it is not clear whether any change at all
would be observed in the place of a star, more especially if
the change of temperature were small.* But this is a point
that can be determined only by careful experiments; and,
until some light be thrown upon it, no great improvement
can be expected in our knowledge of the astronomical re-
fraction.4

# See Dr. BRINRLEY’s Paper, Philosophical Transactions, 1821, p. 335.

+ N.B. In calculating the refractions, the temperature of the mercury in the
barometer is estimated by the interior, that of the air by the exterior, thermometer.

MDCCCXXIII. 3 R
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2 ean Mean " recti i
Stars. 13? A;l:garent Observed l\’}lg;n Mean Ther. C(:)fr;;:;:ﬁ:r;ls Co()r;eﬁgz:ls
Obs.| Altitude. |Refractions. * In. | Out. Table. "Table.
o v roon o o " "

11 Lacertee. | 16|85 4 10.5| 10 10.5( 29.91{47.5 | 38.3| ~—5.3 | — 5.1
» Androm. 12|85 4 37.8| 30 3.7| 2972|510 [ 43.5| —z.2 | — I.1
& Cygni. 15185 10 51.3| 10 23.3| 29.92/40.6 | 38.5 | wmq2 | — 3.8
w Urse Maj. | 1085 53 57.3| 11 §5.8| 29.83141 | 328 —3.7 } — 3.5
+ Androm. 8/86 6 22.z| 12 10.4| 20.73|49.4 ] 39.8| —3.3 | — 2.6
v Androm. 10(86 53 9.1| 13 46.7| 29.75160.3 | §4.3 | =—7.0 | ==~ 1.2
o Androm. 12 |86 58 29.9| 14 41.5| 29.93|48.6 | 38.9| —2.9 | — 2.7
8B Bootis. 5187 8 27.5| 15 21.8| 29.70| 38,4 | 28.7 | —9.7 | —I4.2
n Aurige. 9|87 18 57.8| 15 14.2| 29.85|60.2 | 56.3| —z2.9 | 4+ 5.1
{ Aurige. 13 (87 29 7.6| 15 44.9] 29.78|62.4 | 56.6 | —6.4 | 4 2.3.
B Persel. 17187 59 s51.9| 18 7.1| 20.89]59.7 | 2.5 | =-=6.6 | 4 0.4
o Cygni. 25|88 29 50.5| 21 37.6| 30.05|46.5 |33 | —0.9 | — 7.2
s Persei. 16 (88 41 17.4| 22 23.0| 30.01(58.3149.3| +46.9 | +10.8

If we reject the observations of @ Bootis and ¢ Persei, the
errors of the French Table are all negative ; and, in the New
Table, the negative amount to more than triple the positive
errors. Two different reasons may be assigned for the pre-
ponderance of the negative errors: it may be alledged that
the refractions in the Tables are too great ; or it may be said
that, by using the exterior thermometer, the calculated re-
fractions are increased more than in proportion to the real
temperature of the air. The latter of these reasons is quite
sufficient to account for the discordance; and it will receive
additional force, if we attend to the great differences between
the exterior and interior thermometers. In this case we
cannot, therefore, draw any conclusion with the same confi-
dence as in the preceding observations of Dr. BRINKLEY ; but
we may safely affirm, that the errors of the Table are not
greater than the uncertainty of estimating the temperature of
the air by the exterior thermometer.
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TABLE I

491

Mean Refractions for the Temperature of 50° of FAHRENHEIT,
and the Barometric Pressure 30 inches.

Distance Distance
zfcrﬁ?ﬁq. 36 Log. 20 |Difference. Zggi"t';]' Y Log. 30  |Difference,
o I /" o i
o o o 30 33.72 1.5279 173
1 1.02 0.0085% 3012 31 35.09 1.5452 170
z 2.04 ©.3007 | 1,63 32 36.49 1.5622 168
3 3.00 0.4860 | 17c; 33 3793 | 15790 | 16,
4 408 | 0biiz | Too ) 34 39.39 | 15954 | 14,
5 §.11 0.7086 35 40.89 1.6116
796 160
6 6.14 0.7882 6 36 42.42 1.6276
7 717 | odssy | D3| 37 44.00 | 16435 | 33
8§ 8.21 0.9144 519 38 45.61 1.6591 135
9 9.25 0.9663 | 165 39 47.27 | 16746 | o3
10 10.30 1.0129 40 48.99 1.6901
424 154
I 11.35 1.0553 41 50.75 1.7055§
12 12.42 1.0041 g?g 42 52.57 1.7207 :gf
13 13.49 1,1300 | o7 43 5443 1.7358 152
14 14.56 1.1634 313 44 56.35 1.7510 151
15 15.66 1.1947 45 58.36 1.76611
— 294 - 1512
16 16.75 1.2243 46 0.43 1.78123
17 17.86 1.2519 zg? 47 2.57 1.79637 :g:‘é‘
18 18.98 1.2784 205 48 4.80 181155 | 2
19 20.11 1.3036 251 49 7.11 1.82678 15 g
29 21.26 1.3277 4 50 9.52 1.84208 | 153
- 230 . 1539
21 22.42 1.3507 5I 12.02 1.85747
22 23.60 1.3729 ;f; 52 14.64 1.87298 igg;
23 24.80 1.3944 207 53 17.38 1.88863 1577
24 26.01 1.4151 o 54 20.24 1.90440 1596
25 27.24 1.4352 55 23.2§ 1.92036
195 1617
26 28,49 | 14547 8 56 2641 | 1.93653 | c.g
27 29.76 1.4736 ;8? 57 29.73 1.95291 :6g4.
28 31.08 14921 | o9 58 3323 | 196955 | 6o
29 32.38 1.5102 177 59 36.93 1.98646 1722
30 33.72 1.5279 60 40.85 2.00368
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TABLE 1. continued.

Distance Distance ddd
Zf;?::h 36 Log. 36 |Difference. Zg:i!tnh. 36 Log. 80 |Difference. o
o, o A
6o 1 4{6.85 2.00368 1756 74 00 3 20.01 2.30322 467
61 45.01| 2.02124 1704 10 23.18| 2.30789 5
62 49.44| 2.03918 1836 20 25.39| 2.31259 1;;

63 54.17| 2.05754 | g3, 30| 27.66] 231734 oo
64 59.22| 2.07635 40 29.95 | 2.32213 483

- -| 1932 50 32.30 | 2.32696

65 2 4.65]| 2.09567 1988 488
66 1048 2.115§§ 2048 || 75 ° 34.70| 2.33184 493 0.009
67 16.78 | 2.13603 2116 10 37.16| 2 33677 497
68 23.61| 215719 2101 20 39.65| 2.34174 50z
69 31.04| 2.17910 30 42.21| 2.34676 307

2275 40 44.82| 2.35183 512
70 38 33;2 zzg;f;sg 388 50| 4748 2.35695 o7
20 42.04| 2.20963 gg; 76 oo 50.21| 2.36212 523 o.012
30 43.52| 2.21356 396 10 53.00| 2.3673% 528
40 45.02| 2.21752 398 20 55.85| 2.37263 333
50 46.53| 2.22150 30 §8.76| 2.37796 538
402 40| 4 174| 2383341 Lo,
o | Goks| maagye | 4ok |0 79| 2Tl
20 51.25| 2.23363 1% 77 00 7:91| 2:39430| ., | 0015
30 52.87| 2.23773 413 10 11.11| 2.39987 563
40 54.53| 2.24186 417 20 14.39| 2.40550 260
50 56.21| 2.24603 30 17.74| 2.41119 376
—| " 419 40 21.19 | 2.41695 383
72 00 57.92| 2.2§5c22 423 50. 24.72 | 2.42278
10 59.66| 2.25445% 425 589
20 1.43| 225870 429 78 oo 28.33| 2.42867 6 | o018
30 3.23| 2.26299 10 32.04 | 2.43463| 29
40 5.06| 2.26732 433 20 35 84| 2.44506 bo3
: ) 436 4] 244 611
50 6.93| 2.27168 30 3975 | 2.44677 618
- P P 440 40 43-;2 2.45295 | ¢.6
) . 2.2 o . .
73 10 10.7; 2.2%051 443 5 kil T4soe 635
20 12.74| 2 28498 44g 79 co 52.2| 2.46556 6 0.023
30 14.75 | 2.28¢48 ig(} 10 | 56.47| 2.47198 642
40 16.80 | 2.29402 438 20 | 5§ ©0.94 2.47848 6?9 0.026
50 18.88 | 2.29860 | 30 5-54| 2.48507| o2
- ~|" 462 40 .10.28| 2.49176 6 9
74 oo 21.01| 2.30322 : 50 15.16| 2.49853 77
688
8o oo 20.19 | 2.50541 0.030
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TABLE 1. continued.
. ddy | ddb ||p, ddg | ddd
Distance 220 | 222 ||Distance
— Log. Diff. fro . iff.
chrgml 36 g. 9 id_‘.- dp Lom 54 Log. 8 § | Diff ‘ﬁ- dp
o s [ ° ¢
80 oo} 5 20.19| 2.50541 696 0.030| 0.04 |85 oo| 9 53.84| 277367 11o1] &159 | ©25
10 25.36 | 2.51237 707 0.031 10|10 10.35 | 2.78558 !2? o171} 0.26
20 30.70| 2.51944 | 7 ¢l ©.034 20 27.73 | 2.79777 qu 0.184 | 0.28
30 36.20 | 2.52660 727| 9034 30| 46.03| 2.81025 | % o198 | 0.31
40| 41.88)2.53387 | 7 g 0.036 4o|11 5.30| 2.82302 || 37 0.213 | ©.33
50 47.74 | 2-54125 0.038 50 25.66 | 2.83611 399 0,229 | ©.36
749 1340
81 oo 53.79 | 2.54874 759 0.040 | 0.05 |86 oo 47.15 | 2.84951 1374 0.248 | 0.39
10| 6 004 2.55635 g732| 0042 10|12 9.88 2.86325 1410 0.269 | 0.43
20 €.50 | 2.56407 78| 0044 20| 33.97| 287735 1447 0.292 | 0.47
30 13.18 | 2.57192 797 0.046 | ©.07 30 59.51| 2.89182 1484 0.317 | 0.51
40 20.09 | 2.57989 | g7l 0049 40|13 26.61 | 2.90666 || x| 0345 0.56
50 27.26 | 2.58800 g 0.051 50 55.40| 2.92189 563 0.376 | 0.62
24 1505
82 oo 34.68 | 2.59624 83| ©-053 0.08 || 87 oo|14 26.04 | 2.93754 1608 0410 0.68
10 42.37 | 2.60462 851| ©-037 10 58.71 | 2.95362 1654 0.448 | 0.75
20 50.33 | 2.61313 | g2l 0.060 20|13 33.60 | 2.97016 1701 0.490 | ©.83
30 58.59| 2.62179 883 0.063 | o.10 30|16 1089 2.98717 1749 0.538 | 0.91
40| 7 7.19| 2.63062 890 ©.067 40 50.8 | 3.00466 1807|0593 | 101
50 16.13 | 2.63961 0.071 50[17 33.6 | 3.02267 0.654| 1.13
914 1855
83 oo 25.40 | 2.64875 .| 074 | 0-11 1188 o0 18 19.6 | 3.04122 |, ool 0722 1.26
10 35.05 | 2.65806 329 0.079 10|19 9.0 | 3.06031 136? 0.799 | 1.41
20 45.10 | 2.66755 967 0.084 20|20 2.2 | 3.07998 2026 0.887 | 1.59
30| 55.58(2.67722 086 0.089 | 0.13 30 59.6 | 3.10024 208 0.987 | 1.79
40| 8 6.50| 2.68708 | 7 (| 0.095 4oj2z L7 | 3211370 7 L.IOI{ 2.02
50 17.90| 2.69714 . 0.101 50(23 8.9 | 3.14268 55| 1.231 2.29
‘102 2221|=
84 oo 29.80 | 2.70740 1047] ©1°7 0.16 |89 00|24 21.8 | 3.:16489 2290 1.380 | 2.61
10 42.24 | 2.71787 1069 o.114 1025 40.9 | 3.18779 2361 L.551 | 2.98
20 §5.25 2.7285§ 1092 0.122 20|27 7.1 | 3.:1140 2434 L.749 | 3.41
30| 9 8.88| 2.73948 111g| %130 0.20 30|28 40.8 |3.23574 2509 1.977 | 3.93
40 23.16| 2.75003 113 0.139 40(30 23.2 | 3.26083 258 2.241 | 4.54
50 38.12 | 2.76202 9 0.149 50|32 15.0 | 3.28667 4 2.549 | 5.26
1165 2667
85 ool 53.84|2.77367 0.159 | 0.25 |19o 0034 17.5 | 3-3%334 2.909 | 6.12
. I
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TABLE II.— Thermometer.

o Diff{
50 | 0.00000 50 | o.cocoo
49 | 0.00090 | 91 || 51 | 9.99910
48 | 0.00181 52 | 9.99820
47 | 0.00272 53| 9-99730
46 | 0.00353 | 92 || 54 | 9.99640
45 | 0.00455 551 999559
44 | 0.00546 56 | 9.99460
43 | 0.00638 57 1 9-99371
42 | 0.c0730 58 | 9.99282
41 | o.00822 59 | 999193
40 | 0.00914 6o | 999104 |
39 | o.otcob | 93 || 61 | 9.99016
38 | 0.01099 62 | 9.98927
| 37 | o.o1192 63 | 9.98839
36 | o.o1285 | 94 || 64 | 9.98751
35 | o.01379 65 | 9.98663 |
34 | 0.01472 66 | 9.98575
33 | 0.01566 67 | 9.98488
32 | o.01660 68 | 9.98401
31 | 0.01754 69 | 9.98314
30 | 0.01848 70 | 9.98227
29 | 0.01942 | 95 || 71 | 9.98140
28 | 0.02037 72 1 9.98054
27 | 0.02132 73 | 997967
26 | 0.02227 74 | 9.97881
25 | 0.02323 | 96 | 75 | 9.97795
24 | 0.02418 76 | 9.97709
23 | 0.02513 77 | 997623
22 | 0.02609 78 | 9.97537
21 | 0.027¢6 | 67 || 79 | 9.97452
20 | 0.02803 80 | 9.97367
19 | 0.02900 81 | 9.97282
18 | 0.02997 82 | 9.97197
17 | 0.03094 83 | 997112
16 | 0.03191 84 | 9.97027
15 | 0.03288 | 98 || 85 | 9.96943
14 | 0.03386 86 | 9.96859
13 | 0.03484 87 | 996775
12 | 0.03582 88 | 996691
11 | 0.03680 | 99 || 89 | 9.96607
10 o.o3779 90 | 9.96524

90

88

87

86

85

84

TABLE III.— Barometer.

Diff.

, 89

o Diff.| o Diff.
30 0.00000 30 0.00000
30.1 | 0.0014% 29.9 | 9.99855 | 145
30.2 | 0.00289 |144|| 29.8 | 9.99709
30.3 | 0.00432 29.7 | 999563
30.4 | 0.00575 29.6 | 9.99417 | 146
30.5 | ©.00718 |143| 29.5 | 9.99270
30.6 | 0.00860 29.4 | 9.99123 | 147
30.7 | c.otooz |14z | 29.3 | 9.98975 |148
30.8 | 0.01143 29.2 | 9.98826
30.9 | o.01284 |141| 29.1 | 9.98677
31.0 | o.01424 |140|| 26.0 | 9.98528 | 149
28.9 | 9.98378
28.8 | 9.98227
28.7 | 9.98076 | 151
28.6 | 9.97924
28.5 | 9.97772
28.4 | 9.97620 |152
28.3 | 9.97466
28.2 | 9.97313
28.1 | 9.97158
28.0 | 9.97004 | 154
27.9 | 9.96848
z7.g 9.96692 | 156
27.7 | 996536 157
27.6 | 9.96379
27.5 | 9.96221 |158
TABLE IV.
o + o —_
§o0 | o.00co0 50 | 0.00000
40 | 0.00043 60 | 0.00043
30 | 0,00087 70 | 0.00087
20 | 0.00130 80 | 0.00130
10 | 0.00173 go | c.o?173
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This Table of refractions has been constructed merely with
the view of comparing the theory contained in the Paper with
observation. The elements are precisely the same as those
of the French Table in all other respects excepting the quan-
tity £, which is assumed equal to £, from the exact manner
in which this value seems to represent terrestrial observa-
tions. But it would be more satisfactory to determine the
same quantity by the comparison of many observed refrac-
tions at low altitudes, between the distances of 85° and 88°
from the zenith ; and by this means a Table might be con-
structed that would be deserving of greater confidence.

J. IVORY.



